
A

Project Report

on

CLI Command Generation Using Generative AI

Submitted to

Sant Gadge Baba Amravati University, Amravati

Submitted in partial fulfilment of

the requirements for the Degree of

Bachelor of Engineering in

Computer Science and Engineering

Submitted by

 Atharva Tattu Prajwal Chitode

 (PRN:203120386) (PRN: 213120427)

 Rushikesh Dhawne Vedant Chaudhari

 (PRN:203120290) (PRN:203120299)

Under the Guidance of

Name of guide

Dr. P. V. Deshmukh

Asst. Prof, CSE Dept.

Department of Computer Science and Engineering

Shri Sant Gajanan Maharaj College of Engineering,

Shegaon – 444203 (M.S.)

Session 2023-2024

Acknowledgement

It is our utmost duty and desire to express gratitude to various people who

have rendered valuable guidance during our project work. We would have never

succeeded in completing our task without the cooperation, encouragement and help

provided to us by then. There are a number of people who deserve recognition for

their unwavering support and guidance throughout this report.

 We are highly indebted to our guide Dr. P. V. Deshmukh for her guidance

and constant supervision as well as for providing necessary information from time to

time. We would like to take this opportunity to express our sincere thanks, for her

esteemed guidance and encouragement. Her suggestions broaden our vision and

guided us to succeed in this work.

 We are sincerely thankful to Dr. J. M. Patil (HOD, CSE Department, SSGMCE,

Shegaon), and to Dr. S. B. Somani (Principal, SSGMCE, Shegaon) who always has been

kind to extend their support and help whenever needed.

We would like to thank all teaching and non-teaching staff of the department

for their cooperation and help. Our deepest thank to our parents and friends who have

consistently assisted us towards successful completion of our work.

 Projectees

Atharva Tattu

Prajwal Chitode

Rushikesh Dhawne

Vedant Chaudhari

i

ABSTRACT

The integration of generative Artificial Intelligence (AI) in Command Line Interface

(CLI) command generation represents a transformative leap in computing, promising

to democratize access to powerful tools and streamline interactions between users and

systems. Traditionally, the CLI has been lauded for its efficiency but criticized for its

steep learning curve and syntax complexity, hindering its usability and accessibility.

However, with the advent of generative AI, this paradigm is shifting. Through machine

learning algorithms, generative models analyze vast repositories of CLI commands,

learning semantic relationships and syntactic structures to generate coherent and

contextually relevant commands in real-time. This breakthrough empowers users of all

skill levels to interact with CLI environments more intuitively, reducing the cognitive

load associated with command formulation. The benefits of AI-driven CLI command

generation are manifold. It adapts to user preferences and contextual cues, automating

repetitive tasks and accelerating workflows in software development, system

administration, and data analysis. For developers, AI-generated commands streamline

debugging processes and improve code quality, while system administrators can

automate routine maintenance tasks and enhance system security. In data analysis and

machine learning, AI-driven CLI tools expedite data preprocessing, model training, and

experimentation workflows, facilitating insights and discoveries. However, the

integration of generative AI in CLI environments also presents challenges. Usability,

accuracy, and security are paramount considerations, necessitating robust validation

mechanisms and safeguards to maintain reliability and safety. Moreover, efforts to

enhance the interpretability and explainability of AI-generated commands foster user

trust and understanding. In conclusion, the convergence of CLI and generative AI

represents a significant advancement in human-computer interaction, with the potential

to reshape workflows and accelerate innovation across industries, while ensuring

accessibility and usability for users worldwide.

Keywords: Command Line Interface, Artificial Intelligence, AI-Driven Tools.

ii

Contents

Particulars Page No.

Abstract i

Contents ii

List of Abbreviations and Symbols iii

List of Figures and Tables iv

Chapter -1: Introduction 01

1.1 Overview 01

1.2 Background and Significance of the Problem 03

1.3 Aims of research work study 03

1.4 Objectives and scope of the work 04

Chapter -2: Literature Review 05

Chapter -3: Methodology 08

3.1 System Architecture 08

3.2 ChatGPT API request and response 10

3.3 How to use Application 12

3.4 Tech Used 13

Chapter -4: Implementation 14

4.1 Code Snippets 14

Chapter -5: Result and Discussion 21

5.1 Results 21

Chapter -6: Conclusion 31

Chapter -7: Future Scope 32

References 34

Dissemination of work 36

Plagiarism Report

iii

List of Abbreviations and Symbols

Symbol/Abbreviation Particulars

API Application Programming Interface

CLI Command Line Interface

LSTM Long Short-Term Memory Networks

ONNX Open Neural Network Exchange

MXNet Mixed Network

IoT Internet of Things

AI AI: Artificial Intelligence

NLP Natural Language Processing

LLM Large Language Models

UAVs Unmanned Aerial Vehicles

iv

List of Figures and Tables

Sr. No. Particulars Page No.

3.1 Proposed System Overview 08

3.2 Interaction with ChatGPT 10

3.3 Steps to use Application 12

4.1 Main file Code 14

4.2 Using OraPromise Code 14

4.3 Looping the Responses Code 15

4.4 Sending To ChatGpt Code 16

4.5 Message Specification Code 16

4.6 About Us Code 17

4.7 Accessing Shell Code 18

4.8 Executing Shell Commands Code 19

5.1 Input List all files Input 21

5.2 Main file Code 21

5.2 Output for List all files 23

5.3 Input for Finding Pattern in file 23

5.4 Output for Finding Pattern in file 25

5.5 Creating Html File 25

5.6 Input for downloading Packages 29

5.7 Output for downloading Packages 29

CHAPTER 01

INTRODUCTION

Chapter1 - Introduction

Department of Computer Science Engineering SSGMCE, Shegaon Page 1

1.INTRODUCTION

1.1 OVERVIEW

Command-line interfaces serve as a fundamental tool for system

administrators, developers, and power users alike, enabling swift and precise control

over computing resources. Despite their power and versatility, CLI commands can be

intimidating, especially for newcomers to the command-line environment. Generative

AI offers a novel approach to alleviate this complexity by leveraging machine

learning algorithms to automatically generate CLI commands based on user intent and

contextual cues. By harnessing the power of natural language processing (NLP) and

pattern recognition, generative AI models can interpret user commands, infer desired

actions, and construct syntactically correct CLI instructions, thereby enhancing

usability and accessibility.

In contemporary computing environments, the command-line interface (CLI)

remains a fundamental tool for interacting with operating systems and software

applications. Yet, the manual construction of CLI commands presents a significant

hurdle, demanding users to possess extensive knowledge of command syntax and

system functionalities. This reliance on manual crafting often serves as a bottleneck,

impeding productivity and hindering accessibility for less experienced users. To

address this challenge, the integration of generative artificial intelligence (AI)

techniques has emerged as a promising solution. By leveraging AI, users can

automate and optimize the process of CLI command generation, thereby streamlining

interactions with computing systems. Natural language processing (NLP) models,

trained on vast repositories of CLI documentation and usage examples, enable users

to express their intentions in natural language, with the AI system converting these

inputs into precise CLI commands.

Furthermore, machine learning algorithms can analyze patterns in historical

CLI commands and user behaviors to offer real-time suggestions or auto-complete

commands, enhancing user productivity and reducing errors. Additionally,

reinforcement learning methods can continuously refine CLI command generation

based on user feedback, ensuring adaptability to evolving user needs and preferences.

In essence, the integration of AI into CLI environments holds the potential to

Chapter1 - Introduction

Department of Computer Science Engineering SSGMCE, Shegaon Page 2

democratize access to command-line functionalities, making them more intuitive and

efficient for a broader spectrum of users, regardless of their expertise level.

One of the key advantages of AI-driven CLI command generation is its ability

to adapt to user preferences and contextual cues. Through natural language processing

(NLP) techniques, generative models can interpret user input, infer intent, and

generate commands tailored to specific tasks or objectives. This level of

customization not only enhances user productivity but also fosters a more seamless

and fluid interaction between humans and machines.

Furthermore, the integration of generative AI in CLI environments has

profound implications for various industries and domains. In software development,

for instance, developers can leverage AI-generated commands to automate repetitive

tasks, accelerate debugging processes, and improve code quality. System

administrators can benefit from AI-driven CLI tools by automating routine

maintenance tasks, optimizing resource allocation, and enhancing system security. In

the realm of data analysis and machine learning, generative AI holds promise for

streamlining data preprocessing, model training, and experimentation workflows. By

generating complex CLI commands based on data context and analysis requirements,

data scientists and researchers can expedite the exploration and interpretation of large

datasets, facilitating insights and discoveries.

However, while the potential of AI-driven CLI command generation is

undeniable, it also raises important considerations regarding usability, accuracy, and

security. As with any AI-powered solution, robust validation mechanisms and

safeguards must be implemented to ensure the reliability and safety of generated

commands. Additionally, efforts should be made to enhance the interpretability and

explainability of AI-generated commands, enabling users to understand the rationale

behind each recommendation and fostering trust in the system. In conclusion, the

convergence of CLI and generative AI represents a significant milestone in the

evolution of human-computer interaction. By automating command generation and

enhancing user experiences, AI-driven CLI tools have the potential to democratize

access to powerful computing resources and accelerate innovation across industries.

This report endeavors to provide a comprehensive exploration of this transformative

technology, shedding light on its benefits, challenges, and future directions in the

realm of CLI command generation.

Chapter1 - Introduction

Department of Computer Science Engineering SSGMCE, Shegaon Page 3

1.2 BACKGROUND AND SIGNIFICANCE OF THE PROBLEM

The proliferation of CLI-based tools underscores the need to optimize command

generation processes to meet diverse user needs. However, manually crafting CLI

commands poses challenges: complexity requires a deep understanding of syntax and

configurations, hindering novice users; iterative refinement is time-consuming,

especially for complex tasks, leading to productivity issues; and human errors in

formulation can result in unintended consequences or security risks, necessitating

automated validation. Addressing these challenges is crucial for improving user

productivity, fostering CLI adoption, and creating a more inclusive computing

environment.

1.3 AIMS OF RESEARCH OF WORK STUDY

The primary focus of this research is to explore the viability and effectiveness of

integrating generative AI techniques into CLI command generation, with specific

objectives in mind. Firstly, we aim to delve into state-of-the-art generative AI

algorithms like recurrent neural networks (RNNs), transformer models, and

reinforcement learning methods to identify the most suitable methodologies for CLI

command synthesis. Secondly, we intend to curate a diverse dataset of CLI commands

sourced from open-source repositories, software documentation, and user

contributions, ensuring comprehensive coverage of command syntaxes, operating

systems, and software domains. Thirdly, our goal is to develop and train generative AI

models capable of comprehending user intents and producing contextually relevant

CLI commands, utilizing techniques such as sequence-to-sequence learning, attention

mechanisms, and transfer learning. Subsequently, we plan to evaluate the

performance of these models rigorously through testing against benchmark datasets,

user simulations, and real-world usage scenarios, assessing criteria like command

accuracy, syntactic correctness, and user satisfaction. Finally, we aim to explore

practical applications of generative AI-generated CLI commands across various use

cases, including system administration, software development, data analysis, and

automation workflows, to showcase the versatility and utility of our proposed

approach.

Chapter1 - Introduction

Department of Computer Science Engineering SSGMCE, Shegaon Page 4

1.4 OBJECTIVES AND SCOPE OF WORK

❖ To invent novel generative AI algorithms tailored for CLI command

generation, optimizing for accuracy, efficiency, and scalability.

❖ To conduct comprehensive evaluations of developed models using standard

metrics and user feedback, iteratively refining model architectures and training

methodologies.

❖ To explore potential applications of generative AI-generated CLI commands

in various domains, ranging from cloud computing and DevOps to scientific

computing and cybersecurity.

❖ To provide practical guidelines and best practices for integrating generative

AI-based CLI command generation into existing software ecosystems,

fostering adoption and interoperability.

CHAPTER 02

 LITERATURE REVIEW

Chapter 2 – Literature Review

Department of Computer Science Engineering SSGMCE, Shegaon Page 5

2. LITERATURE REVIEW

Partha Pratim Ray (2023). the author proposes an extensive examination into the

transformative influence wielded by ChatGPT, an advanced AI language model, across

a diverse array of sectors, including scientific research, customer service, healthcare,

and education. In his comprehensive review, Ray meticulously traces the lineage of

ChatGPT, delving into its origins, technological intricacies, and key developmental

milestones, with a particular emphasis on its evolution from the Generative Pre-trained

Transformer (GPT) architecture and its distinctive features compared to models such

as Generative Adversarial Network (GAN). Addressing significant challenges inherent

in its deployment, Ray navigates ethical concerns and data biases while offering

pragmatic strategies for mitigation, thereby paving the way for responsible AI

development. Looking towards the future, Ray envisages a landscape where ChatGPT

seamlessly integrates with complementary technologies, enhances human-AI

interaction, and contributes to narrowing the digital divide. Despite lingering

controversies, ChatGPT remains a focal point for its potential to revolutionize research

and industry practices, as Ray's insightful analysis underscores the enduring allure and

profound implications of its advancement.[1]

Dinesh Kalla's (2023) the author intricately delves into profound impact of ChatGPT,

an innovative AI technology developed by OpenAI, across diverse domains. The survey

meticulously traces ChatGPT's origins within the Generative Pre-trained Transformer

(GPT) architecture, elucidating its operational framework, deep neural network

architectures, and iterative training methodologies. Through compelling case studies

and real-world applications, it highlights ChatGPT's transformative influence in

academia, industry, and beyond, showcasing its role in enhancing productivity,

fostering collaboration, and reshaping communication paradigms. While

acknowledging its advantages in natural language generation and scalability, the survey

candidly addresses challenges such as biases in responses and limitations in emotional

intelligence, underscoring the importance of ongoing research and ethical

considerations. Looking ahead, the survey envisions promising opportunities for

innovation and collaboration, positioning ChatGPT as a catalyst for future

Chapter 2 – Literature Review

Department of Computer Science Engineering SSGMCE, Shegaon Page 6

advancements in AI-driven conversational agents, thus serving as a guiding beacon for

balanced AI development and deployment.[2]

Devadas Menon and K. Shilpa (2023) .the author publish a qualitative investigation

delving into the determinants influencing users' acceptance and utilization of OpenAI's

ChatGPT, leveraging the Unified Theory of Acceptance and Usage of Technology

(UTAUT) model. Through insightful semi-structured interviews involving 32 users

from India, the research discerns pivotal factors dictating users' interactions with

ChatGPT. Alongside fundamental UTAUT constructs such as performance expectancy

and effort expectancy, the study identifies additional dimensions like perceived

interactivity and privacy concerns as influential in users' engagement with ChatGPT.

Moreover, the analysis unveils that age and experience play a moderating role, shaping

the significance of these factors in users' decision-making processes. Importantly, the

implications of this study extend beyond mere user behavior analysis, offering

actionable insights for developers to refine ChatGPT's design and functionality, thereby

enhancing its usability and adoption. Furthermore, by contributing to the burgeoning

literature on AI technology acceptance, this research informs broader discussions

surrounding the societal integration of advanced AI-driven solutions like ChatGPT,

underscoring its potential impact on various facets of contemporary life.[3]

Tom Fellmann and Manolya Kavakli (2007),the author delve into the comparative

utility of Command Line Interfaces (CLIs) versus Graphical User Interfaces (GUIs) in

the development of Virtual Reality (VR) systems, with a specific focus on the coding

expertise and differing approaches of novice and expert programmers. Their paper

meticulously presents a comparative analysis of the advantages and disadvantages

inherent in both interfaces, considering factors such as ease of use, productivity,

resource consumption, and scriptability. While acknowledging the proficiency of

expert programmers in CLI environments, the study underscores the necessity for

GUIs, even for skilled developers, in simplifying the complexity of VR systems and

enhancing user efficiency through features like pre-initialized settings and logical order

presentation. Furthermore, it highlights the importance of adaptability in GUI design to

cater to varying levels of programming proficiency. Through this investigation,

Fellmann and Kavakli contribute valuable insights into understanding interface

Chapter 2 – Literature Review

Department of Computer Science Engineering SSGMCE, Shegaon Page 7

preferences and requirements in VR development, offering guidance on optimizing

programming environments to accommodate diverse user groups effectively.[4]

Volker Bilgram and Felix Laarmann (2023) explores the transformative impact of

generative Artificial Intelligence (AI) on innovation management, particularly focusing

on the early phases of exploration, ideation, and digital prototyping. Through

experimentation with large language models (LLMs), such as the generative pretrained

transformer (GPT), the authors demonstrate how AI can augment innovation processes,

democratizing access to AI tools and reshaping workflows. The research draws on six

months of intensive experimentation with LLMs in both internal development and

client projects, offering concrete examples and first-hand experiences of AI-assisted

approaches. The study highlights the versatility of generative AI in various innovation

tasks, from user journey mapping to idea generation and prototyping, and underscores

its potential to revolutionize knowledge management systems. Moreover, the authors

argue that generative AI, by enabling faster iterations and reducing costs in early

prototyping, could fundamentally change the innovation landscape. Despite the initial

skepticism about AI's suitability for creative tasks, the emergence of transformer

language models has shifted perceptions, positioning AI as a central tool for idea

generation and innovation. However, while the potential benefits of AI-augmented

innovation management are evident, research on its practical application in corporate

settings remains limited, emphasizing the need for further exploration and analysis in

this emerging field.[5]

CHAPTER 03

 METHODOLOGY

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 8

3.METHODOLOGY

3.1 SYSTEM ARCHITECTURE OVERVIEW

The system architecture gives an overview of the working of the system. The working

of this system is shown below:

 Figure 3.1 Proposed System Overview

User Interaction:

The interaction begins when a user engages with your Command Line Interface (CLI)

application. This interaction typically involves the user entering a command or

providing input through the terminal interface.

Command Processing:

Upon receiving the user's command or input, your application starts the processing

phase. This step may involve parsing the input, validating it for correctness or

completeness, and preparing it for further processing.

OpenAI API Call:

After processing the command, your application initiates an API call to the OpenAI

API, specifically targeting the GPT-3.5 Turbo model. This call is the bridge between

your application and the powerful natural language processing capabilities offered by

GPT-3.5 Turbo.

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 9

Input to GPT-3.5 Turbo:

The processed command or input from your application serves as the prompt for the

GPT-3.5 Turbo model. This prompt is formulated to encapsulate the user's intent or

question in a way that GPT-3.5 Turbo can understand and generate a meaningful

response.

Response Generation:

GPT-3.5 Turbo processes the input prompt using its advanced language model and

contextual understanding. It generates a response based on the prompt, leveraging its

vast knowledge and learning from extensive training data.

Response Handling:

Upon receiving the response from GPT-3.5 Turbo, your application proceeds to handle

the output. This step involves processing the AI-generated response, which may include

filtering out irrelevant information, formatting the output for presentation, or extracting

key insights from the response.

Output Processing:

The processed output from GPT-3.5 Turbo, now refined by your application, is ready

for further processing or presentation. Depending on the nature of the command and

response, your application may perform additional logic or transformations to prepare

the output for the user.

Confirmation and Feedback:

With the processed output in hand, your application generates a meaningful

confirmation or feedback message for the user. This message could include the results

of a computation, a summary of information, an action taken based on the input, or any

other relevant response.

Display to User:

Finally, the confirmation or feedback message generated by your application is

displayed to the user via the CLI interface. This interaction loop closes the

communication cycle, providing the user with the requested information or

acknowledging their command's execution.

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 10

3.2 CHATGPT API REQUEST AND RESPONSE

 Figure 3.2 Interaction with ChatGpt

The image depicts a typical API (Application Programming Interface) architecture and

its flow. The main components represented are:

1. Users: The entities that send requests to the API and receive responses from it.

2. API: The core component that handles user requests and responses. It consists of the

following sub-components: - Endpoint: The entry point where user requests are

received. - Request validation: This component validates the incoming requests to

ensure they are well-formed and meet the required criteria. - Handler: This component

processes the validated requests and performs the necessary operations. - Response

validation: This component validates the responses generated by the handler before

sending them back to the users.

3. OpenAPI: This component represents the OpenAPI specification, which is a

standardized way to define and document APIs.

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 11

4. Database: The API undertakes execution of its functions by interacting with the

database such that the database stores and retrieves data during request processing. The

flow illustrated in the diagram is as follows:

The flow illustrated in the diagram is as follows:

1. The users start making the API calls.

2. The requests are destined to land at the endpoint.

3. Subsequently, the requests use Back-end Validation for authenticating if they are

valid.

4. The marked requests then push to the Handler for the processing.

5. The Hands of the Modules which have been demarcated are to be validated during

the Response generation.

6. The action is at the discretion of the Users.

This diagram offers a simple yet detailed view of a logical structure of an API and the

significant elements within this design: the incoming of user requests, responding to

them, interaction with the database and the Open API format for API documentation.

Problem Statement: The purpose of the project is to create a Node.js software that

connects a command-line interface (CLI) with OpenAI's GPT-3 API. The application

should be able to communicate with users via the command-line interface and have the

features of the interface so that is easy to access the GPT-3's natural language

processing functions and receives replies. System Components: Node.js app with CLI

app: The main system that handles the flow of input between the CLI, the application

logic, and the API OpenAI GPT-3 API: The service which is bought from outside is

dedicated to the consideration of natural language and the generating of replies on a

basis of user input.

System Requirements: Functionalities: The system has to offer the user to type in a

query text through the CLI interface. Security: Make sure implementation of API keys

and data door care. Error Handling: Take care with reverting error handling mechanism

to the proper level which is unexpected occurrences. User Experience: The graphical

user interface of the CLI interface should help users to perform operations easily in a

logical manner as quick responses and direct feedback are expected from users.

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 12

3.3 HOW TO USE APPLICATION

 Figure 3.3 Step to use Application

This image outlines the steps to use a command-line interface (CLI) command

generation tool. Here's a detailed explanation of the flow:

1. Download Zip from https://github.com/lite-4846/cli - The first step is to download a

ZIP file containing the CLI tool from the specified GitHub repository.

2. Extract the ZIP and open terminal - After downloading the ZIP file, you need to

extract its contents, and then open a terminal or command prompt on your system.

3. npm install - In the terminal, run the command npm install. This command installs

all the required dependencies and packages for the CLI tool to work correctly.

4. npm run build - After installing the dependencies, run the command npm run build.

This command builds and compiles the CLI tool, making it ready for use.

Chapter 3 – Methodology

Department of Computer Science Engineering SSGMCE, Shegaon Page 13

5. Set openAI key : Go to Environment variables and set OPENAI_API_KEY to your

Api key - The CLI tool likely integrates with the OpenAI API for certain functionalities.

To use the API, you need to obtain an API key from OpenAI and set it as an

environment variable named OPENAI_API_KEY. This step ensures that the CLI tool

can authenticate with the OpenAI API and access its services.

By following these steps, you will have the CLI command generation tool set up and

ready to use on your system. The tool can then be used to generate various commands

or perform other tasks related to its functionality.

3.4 TECH USED

Node.js: Node.js is a runtime environment that allows you to run JavaScript code

outside the browser, making it suitable for server-side applications and command-line

tools.

TypeScript: TypeScript is a superset of JavaScript that adds static typing and other

features to help developers write more robust and maintainable code, especially in

large-scale projects.

Enquirer: Enquirer is a lightweight library for creating interactive command-line

prompts in Node.js, providing a simple and elegant way to gather user input.

oraPromise: oraPromise is a promise-based wrapper for the ora library, which allows

you to display elegant loading spinners and messages in the terminal while waiting for

asynchronous operations to complete.

OpenAI: OpenAI provides powerful artificial intelligence (AI) models and APIs, such

as GPT-3, for natural language understanding and generation tasks, enabling developers

to integrate AI capabilities into their applications.

Chalk: Chalk is a library for styling and coloring terminal output in Node.js, offering

an easy way to add colors, styles, and formatting to text displayed in the command-line

interface for improved readability and visual appeal.

CHAPTER 04

 IMPLEMENTATION

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 20

 4.IMPLEMENTATION

4.1 CODE SNIPPETS

 Figure 4.1 Main File Code

 Figure 4.2 Using Orapromise Code

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 21

 Figure 4.3 Looping the Responses Code

This code is a TypeScript module that serves as the main entry point for a CLI

application. Here's a brief description of its functionality:

Imports: It imports various modules such as about, version, commands,

whatCommandToRun, isOpenAiKeyInEnvironment, and oraPromise from different

files.

Main Function: The main function is an asynchronous function that takes command-

line arguments (argv) as input. It extracts the command and arguments from the input,

checks for special commands like "help" and "version," and displays relevant

information if needed. It checks if the OpenAI API key is set in the environment

variables; if not, it prompts the user to set it. It joins the remaining arguments into

content and calls whatCommandToRun function to determine the appropriate action

based on user input. It uses oraPromise to display a loading spinner while waiting for

the response from whatCommandToRun.

 Processing Response: It loops through the choices in the response from

whatCommandToRun. If a choice contains a function_call, it attempts to execute the

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 22

corresponding function from the commands module based on the function name

provided. If a choice indicates a stop or length limit, it displays a relevant message.

 Figure 4.4 Sending to ChatGPT Code

 Figure 4.5 Message Specification Code

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 23

This code defines an asynchronous function whatCommandToRun that interacts with

the OpenAI API to determine the appropriate command to execute based on the input

messages. Here's a breakdown of what it does: Imports: It imports the OpenAI module

for interfacing with the OpenAI API, the process module for environment information,

and the cliLLMModel from the utils.js file. Function Definition: The

whatCommandToRun function takes an array of messages as input, which are

parameters for generating completions in the OpenAI chat model. OpenAI Interaction:

It creates a new instance of the OpenAI class. It calls the openai.chat.completions.create

method to generate completions based on the specified parameters. The model

parameter (cliLLMModel) specifies the language model to use for completions. The

messages parameter includes system information (OS, Arch, shell, etc.) and user-

provided messages to generate completions. The temperature parameter controls the

randomness of the completions (set to 0 for deterministic completions). The functions

array defines available functions that can be suggested in completions. In this case, it

includes a shell function. Function Call: The function_call parameter specifies which

function to call (shell function in this case.

 Figure 4.6 About Us Code

This code defines two constants version and about, utilizing the chalk library for

colorful formatting in the CLI. Here's what each part does:

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 24

Import Chalk:

It imports the chalk library for styling and coloring terminal output.

Version Constant:

The version constant holds a string value representing the version of the application

("0.0.8-alpha.0" in this case).

About Constant:

The about constant contains a multiline string describing the application and its usage.

It uses chalk.bold to format specific parts of the text in bold for emphasis.

It provides information about usage, options (help and version), and examples using the

application (wz in this context).

Usage of Chalk:

Chalk's formatting methods (chalk.bold) are used to enhance the appearance of the text

in the about constant.

These formatting options help in presenting information clearly and making certain

parts of the text stand out (such as command examples or important messages).

Overall, this code snippet is part of a CLI application and serves to define constants for

version information (version) and an about/help message (about) with styled formatting

using the chalk library for better visual presentation in the terminal.

 Figure 4.7 Accessing Shell Code

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 25

 Figure 4.8 Executing Shell Command Code

This code snippet defines a function `shell` that uses the Enquirer library to prompt the

user for confirmation before executing a shell command. Here's a breakdown of how it

works:

1. **Importing Dependencies:** - It imports the `Enquirer` library for creating

interactive prompts and the `executeShellCommand` function from the `utils.js` file.

2. **ShellOptions Interface:** - It defines an interface `ShellOptions` representing the

options required for running a shell command, such as ̀ command` (the actual command

to execute) and `description` (a description of what the command does).

Chapter 4 – Implementation

Department of Computer Science Engineering SSGMCE, Shegaon Page 26

3. **shell Function:** - The `shell` function takes an object of type `ShellOptions` as

input. - It uses `Enquirer.prompt` to create a confirmation prompt (`confirm` type)

asking the user if they want to run the provided command. - The confirmation message

includes the provided command and its description. - It waits for the user's confirmation

response (`confirm: boolean`).

4. **User Confirmation Handling:** - If the user confirms (`response.confirm` is

`true`), the `executeShellCommand` function is called with the provided command. - If

the user cancels the operation (`response.confirm` is `false`), it displays "Aborting..."

and exits the function. This `shell` function adds an interactive layer to the CLI

application, ensuring that users confirm before potentially executing sensitive or critical

shell commands. It enhances usability and prevents accidental command execution.

CHAPTER 05

 RESULT AND DISCUSSION

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 21

5. RESULT AND DISCUSSION

5.1 RESULT

List All Files :-

Figure 5.1 Input List all Files Input

Figure 5.2 Output for List of Files

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 22

The image shows the terminal output after running the command "cli list all the files"

in an integrated development environment (IDE) or code editor.

The terminal first acknowledges that it is processing the command by displaying "✓ cli

is thinking..." and "✓ List all the files in the current directory". It then prompts the user

with "Are you sure you want to run: ls -l? (y/n)" and the user has responded with "true",

confirming the execution of the command.

The output then displays the list of files in the current directory ("Demo"), along with

their permissions, ownership, size, and modification dates. The files listed are:

1. app.js (0 bytes, modified on Apr 24 19:17)

2. Code.txt (9562 bytes, modified on Apr 24 12:51)

3. Demo.html (0 bytes, modified on Apr 24 19:17)

4. methodology.txt (8981 bytes, modified on Apr 24 12:42)

The file listing is presented in a long format (indicated by the "-l" option in the "ls"

command), which provides detailed information about each file, such as permissions,

owner, group, size, and timestamps.

After displaying the file list, the terminal cursor is positioned on a new line, ready for

the next command input.

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 23

Create java File :-

Figure 5.3 Input for Creating Java File

Figure 5.4 Output for Creating Java File

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 24

The image shows the continuation of the previous command "cli create a Java file and

write Hello world in it" in the integrated development environment (IDE) or code

editor.

After acknowledging the command and confirming that it is processing the request ("✓

cli is thinking..." and "? Create a Java file and write 'Hello World' in it"), the IDE is

proposing to create a Java file named "HelloWorld.java" with the following contents:

java

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

This is a basic Java program that defines a class named "HelloWorld" with a main

method. When executed, this program will print the string "Hello World" to the console

or output.

The IDE is prompting the user with the message "Are you sure you want to run: echo

'public class HelloWorld {\n public static void main(String[] args) {\n

System.out.println("Hello World")\n }\n}' > HelloWorld.java? (y/n)". This indicates

that the IDE is seeking confirmation from the user to create the "HelloWorld.java" file

with the proposed Java code.

The user has responded with "false", which means they have declined or rejected the

creation of the file with the provided code.

So, at this point, the IDE has not yet created the Java file as per the original command,

and it is awaiting further input or instructions from the user.

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 25

Find Pattern in Files :-

Figure 5.5 Input for Finding Pattern In File

Figure 5.6 Output for Finding Pattern in File

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 26

The scenario you provided involves a user initiating a command-line interface (CLI)

and requesting to find a specific pattern in a file named "Code.txt." In response, the CLI

suggests running the command "grep pattern Code.txt" to search for the pattern.

However, the CLI presents a confirmation prompt asking, "Are you sure you want to

run: grep pattern Code.txt? (y/N)" Here, the user's input, "false," indicates that they do

not want to proceed with running the suggested command.

To explain in detail, "grep" is a command-line utility for searching plain-text data sets

for lines that match a regular expression. In this context, it's being used to search for

the specified pattern in the "Code.txt" file. The pattern to be searched for is denoted by

"pattern" in the command.

The prompt "Are you sure you want to run..." is a safety measure to prevent unintended

or potentially harmful commands from executing without the user's explicit consent.

The user's response of "false" indicates that they do not want to proceed with running

the suggested command, perhaps because they realized it may not yield the desired

results or because they want to refine the search criteria before executing the command.

Overall, this interaction demonstrates the importance of cautious decision-making and

user confirmation when executing commands in a command-line interface, especially

when dealing with potentially sensitive operations like file manipulation or searching.

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 27

Create HTML File :-

Figure 5.7 Creating HTML File

In this scenario, the user is interacting with a command-line interface (CLI) and

requesting to create a new HTML file named "index.html" and write a sample heading

within it.

The CLI suggests a command to accomplish this task: "echo '<h1>This is a sample

heading</h1>' > index.html". This command uses the "echo" command to output the

specified HTML content ("<h1>This is a sample heading</h1>") and redirects (">")

that output to a file named "index.html", effectively creating the file and writing the

HTML content into it.

However, before proceeding, the CLI presents a confirmation prompt: "Are you sure

you want to run: echo '<h1>This is a sample heading</h1>' > index.html? (y/N)". Here,

the user's input of "false" indicates that they do not want to proceed with executing the

suggested command.

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 28

To explain in detail, the suggested command utilizes the "echo" command, a common

command in Unix-like operating systems that prints the specified text to the standard

output. In this case, it prints the HTML content ("<h1>This is a sample heading</h1>")

to the standard output. The ">" symbol redirects this output to a file named

"index.html", creating the file if it does not exist or overwriting it if it does.

The prompt asking for confirmation is a safety measure to prevent unintended actions.

In this context, it ensures that the user confirms their intent to create the file and write

the specified content into it before executing the command. The user's response of

"false" indicates that they have decided not to proceed with executing the command,

possibly due to realizing an error in the command or deciding to handle file creation

differently.

Overall, this interaction illustrates the cautious approach taken by the CLI to ensure

user consent and prevent accidental or undesired actions.

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 29

Downloading Packages :-

Figure 5.8 Input for Downloading Packages

Figure 5.9 Output for Downloading Packages

Chapter 5 –Result and Discussion

Department of Computer Science Engineering SSGMCE, Shegaon Page 30

In this scenario, the user is using a command-line interface (CLI) to request the

download of packages required to run Express (a web application framework for

Node.js) and MongoDB (a NoSQL database). The CLI suggests a command to

accomplish this task: "npm install express mongoose".

However, before proceeding, the CLI presents a confirmation prompt: "Are you sure

you want to run: npm install express mongoose? (y/N)". Here, the user's input of "false"

indicates that they do not want to proceed with executing the suggested command.

To explain in detail, "npm install" is a command used with the Node Package Manager

(npm) to install packages in a Node.js project. In this case, the command is being used

to install two packages: "express" and "mongoose". "Express" is a web application

framework for Node.js, while "mongoose" is an Object Data Modeling (ODM) library

for MongoDB and Node.js, designed to work with MongoDB to simplify interactions

with the database.

The prompt asking for confirmation is a precautionary measure to ensure that the user

confirms their intent to install the specified packages before proceeding. This is

important as package installation can modify the project's dependencies and may have

implications for the project's functionality.

The user's response of "false" indicates that they have decided not to proceed with

executing the command, possibly because they realized they don't need those packages,

or they want to review the command before executing it.

Overall, this interaction demonstrates the CLI's cautious approach to user actions,

ensuring that potentially impactful commands are executed only with

explicit user consent.

CHAPTER 06

CONCLUSION

Chapter 6 – Conclusion

Department of Computer Science Engineering SSGMCE, Shegaon Page 31

6.CONCLUSION

In conclusion, the integration of generative Artificial Intelligence (AI) into Command

Line Interface (CLI) command generation marks a significant advancement in computing.

This fusion of technologies offers unparalleled potential to simplify and streamline

command-line interactions, making computing more accessible and efficient for users

across diverse domains. By leveraging machine learning algorithms, AI-driven CLI

command generation automates the process of command formulation, reducing the

cognitive burden on users and empowering them to focus on their tasks rather than syntax

intricacies.

However, while the benefits are evident, the implementation of AI in CLI environments

also presents challenges that must be addressed. Usability, accuracy, and security are

paramount concerns, requiring robust validation mechanisms and safeguards to ensure

the reliability and safety of generated commands. Additionally, efforts to enhance the

interpretability and explainability of AI-generated outputs are crucial for fostering user

trust and understanding.

Looking ahead, the convergence of CLI and generative AI holds immense promise for

reshaping human-computer interaction. As technology continues to evolve, AI-driven

CLI tools have the potential to democratize access to computing resources, accelerate

innovation, and facilitate seamless interactions between users and systems. By embracing

this transformative technology and addressing its challenges, we can unlock new

possibilities and propel computing into a more accessible, efficient, and user-friendly

future.

CHAPTER 07

FUTURE SCOPE

Chapter 7 – Future Scope

Department of Computer Science Engineering SSGMCE, Shegaon Page 32

7.FUTURE SCOPE

Enhanced Usability and Accessibility: As generative AI continues to evolve, there is

a significant opportunity to further improve the usability and accessibility of CLI

environments. Future research could focus on developing AI-driven CLI interfaces that

adapt to users' preferences and learning styles, making command-line interactions more

intuitive and user-friendly for individuals of all skill levels.

Advanced Natural Language Understanding: Advancements in natural language

understanding (NLU) techniques can enhance the capabilities of generative AI models

to accurately interpret user input and generate relevant CLI commands. Future studies

could explore the integration of state-of-the-art NLU algorithms with generative AI to

improve the accuracy and responsiveness of AI-driven CLI command generation

systems.

Domain-Specific Command Generation: Tailoring generative AI models to specific

domains or industries could unlock new opportunities for CLI command generation.

Future research could focus on training specialized AI models for domains such as

software development, system administration, data analysis, and DevOps, enabling

more contextually relevant and accurate command generation in these areas.

REFERENCES

References

Department of Computer Science Engineering SSGMCE, Shegaon Page 34

REFERENCES

[1] Partha Pratim Ray "ChatGPT: A comprehensive review on background,

applications, key challenges, bias, ethics, limitations and future scope" Published by

Elsevier B.V. on behalf of KeAi Communications Co., Ltd.7 April 2023

[2] Dinesh Kalla "Study and Analysis of Chat GPT and its Impact on Different Fields

of Study"International Journal of Innovative Science and Research Technology. 26

March 2023.

[3] Devadas Menon , K Shilpa "Chatting with ChatGPT: Analyzing the factors

influencing users intention to Use the Open AI’s ChatGPT using the UTAUT model "

Published by Elsevier Ltd. 12 October 2023.

[4] Tom Fellmann , Manolya Kavakli "A Command Line Interface Versus A

Graphical User Interface In Coding Vr Systems" ResearchGate 2015.

[5] Volker Bilgram , Elix Laarmann "Accelerating Innovation With

Generative AI: AI-Augmented Digital Prototyping and Innovation Methods" IEEE

Engineering Management review, vol. 51, no. 2, second quarter , June 2023

[6] V. Gaur and N. Saunshi, ‘‘Symbolic math reasoning with language models,’’ in

Proc. IEEE MIT Undergraduate Res. Technol. Conf. (URTC), Sep. 2022, pp. 1–5.

[7] K. Chen, T. Zhao, M. Yang, L. Liu, A. Tamura, R. Wang, M. Utiyama, and E.

Sumita, ‘‘A neural approach to source dependence based context model for statistical

machine translation,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26,

no. 2, pp. 266–280, Feb. 2018.

[8] A. Mishra, A. Anand, and P. Guha, ‘‘Dual attention and question categorization-

based visual question answering,’’ IEEE Trans. Artif. Intell., vol. 4, no. 1, pp. 81–91,

Feb. 2023.

References

Department of Computer Science Engineering SSGMCE, Shegaon Page 35

[9] M. Yang, C. Li, Y. Shen, Q. Wu, Z. Zhao, and X. Chen, ‘‘Hierarchical human-like

deep neural networks for abstractive text summarization,’’ IEEE Trans. Neural Netw.

Learn. Syst., vol. 32, no. 6, pp. 2744–2757, Jun. 2021.

[10] S. Kusal, S. Patil, J. Choudrie, K. Kotecha, S. Mishra, and A. Abraham, ‘‘AI-

based conversational agents: A scoping review from technologies to future

directions,’’ IEEE Access, vol. 10, pp. 92337–92356, 2022.

[11] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y. Nie, J.

Gao, and B. Dolan, ‘‘A neural network approach to context-sensitive generation of

conversational responses,’’ 2015, arXiv:1506.06714.

[12] G. Bansal, V. Chamola, P. Narang, S. Kumar, and S. Raman, ‘‘Deep3DSCan:

Deep residual network and morphological descriptor based framework forlung cancer

classification and 3D segmentation,’’ IET Image Process., vol. 14, no. 7, pp. 1240–

1247, May 2020.

DISSEMINATION OF WORK

Dissemination of Work

Department of Computer Science Engineering SSGMCE, Shegaon Page 36

PUBLICATION DETAILS

PAPER TITLE CONFERENCE

NAME

CONFERENCE

DURATION

ISSN

NUMBER

Enhancing

Command Line

Interface (CLI)

Usability through

Generative AI:

Current Trends and

Future Direction

International Journal

Of Advanced

Research in

Computer and

Communication

Engineering

4 April 2024

2278-1021

Dissemination of Work

Department of Computer Science Engineering SSGMCE, Shegaon Page 37

Dissemination of Work

Department of Computer Science Engineering SSGMCE, Shegaon Page 37

Dissemination of Work

Department of Computer Science Engineering SSGMCE, Shegaon Page 38

PROJECT GROUP MEMBERS

Name:- Atharva Tattu

Address:- Digras,Yavatmal

Email id:- atharva4tattu2002@gmail.com

Mobile No:- 7517469932

Name:- Prajwal Chitode

Address:- Shegaon

Email Id:- prajwalchitode2002@gmail.com

Mobile No:- 9370409780

Name:- Rushikesh Dhawne

Address:- Yavatmal

Email Id:- rushikeshdhawane64691@gmail.com

Mobile No:- 7666254614

Name:- Vedant Chaudhari

Address:- Amravati

Email Id:- ch.vedant0745@gmail.com

Mobile No:- 7620391783

mailto:atharva4tattu2002@gmail.com
mailto:prajwalchitode2002@gmail.com
mailto:rushikeshdhawane64691@gmail.com
mailto:ch.vedant0745@gmail.com

PLAGIARISM REPORT

Plagiarism Report

Department of Computer Science Engineering SSGMCE, Shegaon Page 39

PLAGIARISM REPORT

