

Shri Sant Gajanan Maharaj College of Engineering, Shegaon

Department of Information Technology

Course Outcomes of all subjects of B.E. Second Year (SEM-III)

3IT01-Engineering Mathematics-III

After successfully completing the course the students will be able to:

CO1	Solve the Linear Differential equations with constant coefficients by various methods.
CO2	Find Laplace Transform of various types of functions and also able to find Laplace Transform of Periodic, Impulse & Unit step function. Use Laplace Transform to solve Linear Differential equations with constant coefficients.
CO3	Find Z Transform of various types of functions and apply this knowledge to solve the Linear Difference equations with constant coefficients.
CO4	Find Fourier Transform of various types of functions. Also find the solution of partial differential equations of first order.
CO5	Test the function for analyticity; find the harmonic conjugate, and able to expand the function in Taylor's or Laurent's series, find conformal mapping.
CO6	Differentiate vector point functions, find gradient of scalar point function, and find curl and divergence of vector point function. Integrate vector point functions Evaluate line, surface and volume integrals.

3IT02-Discrete Structures and Graph Theory

After successfully completing the course the students will be able to:

CO1	The students will be able to demonstrate the basic terminologies of mathematical
	logic, theory of inference and set theory.

CO2	The students will be able to apply mathematical logic, inference theory and set theory, to solve engineering problems.
CO3	The students will be able to apply algebraic structures, grammar, polish expressions and lattices to solve the mathematics expressions.
CO4	The students will be able to apply the lattices for partially ordered relations and Boolean algebraic simplification methods to minimize the Boolean functions
CO5	The students will be able to analyze graphs based on various parameters for graph manipulation and storage representation.

3IT03-Object Oriented Programming

After successfully completing the course the students will be able to:

CO1	Use the fundamental concepts of Java
CO2	Apply concepts of class, objects and arrays in Java.
CO3	Apply concepts of class and objects and arrays in Java
CO4	Use concepts of exceptions and perform the various operations.
CO5	Apply concepts of applet, event handling and abstract window tool kit in Java.

3IT04- Assembly Language Programming

After successfully completing the course the students will be able to:

	Illustrate the organization of register & memory in 8086 microprocessor
CO1	
CO2	Analyse different instruction format & addressing modes in 8086.

CO3	Apply the concept of control flow instruction in 8086 programming.
CO4	Demonstrate the stack & sub routine concept in 8086 programming.
CO5	Explore how I/P interface & interrupt interacted with microprocessor

3IT05-Analog and Digital Electronics

After successfully completing the course the students will be able to:

	Understand the basic applications of BJT.
CO1	
CO2	Get acquainted with analog ICs like Op-Amp IC-741 and Timer IC-555
CO3	Discriminate the working of sinusoidal and non-sinusoidal waveform generators.
CO4	Apply the concept of K-map to simplify logic expressions.
CO5	Design and implement Combinational circuits
CO6	Explore the applications of Sequential circuits