
 1

AVR Interrupts

By

D.BALAKRISHNA,

Research Assistant, IIIT-H

A single microcontroller can serve several devices. There are two methods
by which devices receive service from the microcontroller: interrupts or polling.

Interrupts Vs Polling:

In the interrupt method, whenever any device needs the microcontroller’s
service, the device notifies it by sending an interrupt signal. Upon receiving an
interrupt signal, the microcontroller stops whatever it is doing and serves the
device.

The program associated with the interrupt is called the interrupt service
routine (ISR) or interrupt handler.

In polling, the microcontroller continuously monitors the status of a given
device; when the status condition is met, it performs the service. After that, it
moves on to monitor the next device until each one is serviced. Although polling
can monitor the status of several devices and serve each of them as certain
conditions are met, it is not an efficient use of the microcontroller.

• The advantage of interrupts is that the microcontroller can serve many
devices (not all at the same time, of course); each device can get the
attention of the microcontroller based on the priority assigned to it.

• The polling method cannot assign priority because it checks all devices in a
round-robin fashion.

• More importantly, in the interrupt method the microcontroller can also
ignore (mask) a device request for service.

• This also is not possible with the polling method.
• The most important reason that the interrupt method is preferable is that the

polling method wastes much of the microcontroller’s time by polling devices
that do not need service.

• So interrupts are used to avoid tying down the microcontroller.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 2

Interrupt service routine:

For every interrupt, there must be an interrupt service routine (ISR), or
interrupt handler. When an interrupt is invoked, the microcontroller runs the
interrupt service routine. Generally, in most microprocessors, for every interrupt
there is a fixed location in memory that holds the address of its ISR. The group of
memory locations set aside to hold the addresses of ISRs is called the interrupt
vector table, as shown in Table below

Fig: Interrupt vector table for ATmega 32

Steps in executing an interrupt:

Upon activation of an interrupt, the microcontroller goes through the following
steps:

1. It finishes the instruction it is currently executing and saves the address of
the next instruction (program counter) on the stack.

2. It jumps to a fixed location in memory called the interrupt vector table.
o The interrupt vector table directs the microcontroller to the address of

the interrupt service routine (ISR).

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 3

3. The microcontroller starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from
interrupt).

4. Upon executing the RETI Instruction, the microcontroller returns to the
place where it was interrupted.

o First, it gets the program counter (PC) address from the stack by
popping the top bytes of the stack into the PC.

o Then it starts to execute from that address.

Notice from Step 4 the critical role of the stack. For this reason, we must be careful
in manipulating the stack contents in the ISR. Specifically, in the ISR, just as in
any CALL subroutine, the number of pushes and pops must be equal.

Sources of interrupts in the AVR:

There are many sources of interrupts in the AVR, depending on which
peripheral is incorporated into the chip.

The following are some of the most widely used sources of interrupts in the
AVR:

• There are at least two interrupts set aside for each of the timers, one for over
flow and another for compare match.

• Three interrupts are set aside for external hardware interrupts.
o Pins PD2 (PORTD.2), PD3 (PORTD.3), and PB2 (PORTB.2) are for

the external hardware interrupts INT0, INT1, and INT2, respectively
• Serial communication’s USART has three interrupts, one for receive and

two interrupts for transmit.
• The SPI interrupts.
• The ADC (analog-to-digital converter) interrupts.

Enabling and disabling an interrupt:
Upon reset, all interrupts are disabled (masked). The interrupts must be

enabled (unmasked) by software in order for the microcontroller to respond to
them.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

The D7 bit of the SREG (Status Register) register is responsible for enabling
and disabling the interrupts globally.
interrupts easy. With a single instruction “CLI” (Clear Interrupt), we can make I =
0 during the operation of a critical task.

Fig: Status Register of ATmega

• Bit D7 (1) of the SREG register must be set to HIGH to allow the interrupts
to happen.

o This is done with the “SEI” (Set Interrupt) instruction.
• If I =1, each interrupt is enabled by setting to HIGH the interrupt enable (IE)

flag bit for that interrupt.
o There are some I/O registers holding the interrupt enable bits.
o It must be noted that if I

the corresponding interrupt enable bit is high.

External Interrupts
Three external hardware interrupts are there in

• Pins PD2 (PORTD.2),
• PD3 (PORTD.3),
• PB2 (PORTB.2)

These are for the external hardware interrupts INT0, INT1, and INT2,
respectively

The D7 bit of the SREG (Status Register) register is responsible for enabling
and disabling the interrupts globally. The I-bit makes the job of disabli
interrupts easy. With a single instruction “CLI” (Clear Interrupt), we can make I =
0 during the operation of a critical task.

Fig: Status Register of ATmega 32

Bit D7 (1) of the SREG register must be set to HIGH to allow the interrupts

This is done with the “SEI” (Set Interrupt) instruction.
If I =1, each interrupt is enabled by setting to HIGH the interrupt enable (IE)
flag bit for that interrupt.

There are some I/O registers holding the interrupt enable bits.
It must be noted that if I =0, no interrupt will be responded to, even if
the corresponding interrupt enable bit is high.

Three external hardware interrupts are there in ATmega AVR.

Pins PD2 (PORTD.2),
PD3 (PORTD.3),
PB2 (PORTB.2)

These are for the external hardware interrupts INT0, INT1, and INT2,

4

The D7 bit of the SREG (Status Register) register is responsible for enabling
bit makes the job of disabling all the

interrupts easy. With a single instruction “CLI” (Clear Interrupt), we can make I =

Bit D7 (1) of the SREG register must be set to HIGH to allow the interrupts

If I =1, each interrupt is enabled by setting to HIGH the interrupt enable (IE)

There are some I/O registers holding the interrupt enable bits.
0, no interrupt will be responded to, even if

These are for the external hardware interrupts INT0, INT1, and INT2,

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 5

PROGRAMMING EXTERNAL HARDWARE INTERRUPTS:

The number of external hardware interrupt interrupts varies in different
AVRs. There are three external hardware interrupts in the ATmega32: INTO,
INT1, and INT2.

They are located on pins PD2, PD3, and PB2, respectively. As shown in
Table below, the interrupt vector table locations $2, $4, and $6 are set aside for
INTO, INT1, and LNT2, respectively.

Fig: Interrupt vector table.

The hardware interrupts must be enabled before they can take effect. These
interrupts are controlled by the following registers.

• GICR
• GIFR
• MCUCR
• MCUCSR

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

GICR:

INT0:

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit) the
External Interrupt 0 is enabled
control the interrupt when to be activated (i.e. on rising edg
level sensed).

The INTO is a low
when a low signal is applied to pin PD2 (PORTD.2), the controller will be
interrupted and jump to location $0002 in the vector table to service the TSR.

INT1: When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bi
the External Interrupt 1 is enabled. The ISC11 and ISC10 of MCUCR register
control the interrupt when to be activated (i.e. on rising edge or falling edge or
level sensed).

INT2: When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit)
the External Interrupt 2 is enabled. ISC2 bit of MCUCSR register control the
interrupt when to be activated (i.e. on rising edge or falling edge).

There are 2 types of activation for the external hardware interrupts.

• Level triggered
• Edge triggered

INT0 & INT1 can be edge or level triggered, but INT2 can be edge
triggered only.

The MCUCR & MCUCSR registers decides the triggering options of the external
hardware interrupts INT0, INT1, and INT2.

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit) the
Interrupt 0 is enabled. The ISC01 and ISC00 of MCUCR register

control the interrupt when to be activated (i.e. on rising edge or falling edge or

INTO is a low-level-triggered interrupt by default, which means,
when a low signal is applied to pin PD2 (PORTD.2), the controller will be
interrupted and jump to location $0002 in the vector table to service the TSR.

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bi
the External Interrupt 1 is enabled. The ISC11 and ISC10 of MCUCR register
control the interrupt when to be activated (i.e. on rising edge or falling edge or

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit)
the External Interrupt 2 is enabled. ISC2 bit of MCUCSR register control the
interrupt when to be activated (i.e. on rising edge or falling edge).

There are 2 types of activation for the external hardware interrupts.

Level triggered

INT1 can be edge or level triggered, but INT2 can be edge

The MCUCR & MCUCSR registers decides the triggering options of the external
hardware interrupts INT0, INT1, and INT2.

6

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit) the
. The ISC01 and ISC00 of MCUCR register

e or falling edge or

by default, which means,
when a low signal is applied to pin PD2 (PORTD.2), the controller will be
interrupted and jump to location $0002 in the vector table to service the TSR.

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit)
the External Interrupt 1 is enabled. The ISC11 and ISC10 of MCUCR register
control the interrupt when to be activated (i.e. on rising edge or falling edge or

When this bit is ‘1’ and global interrupt bit in SREG is ‘1’ (i.e. I bit)
the External Interrupt 2 is enabled. ISC2 bit of MCUCSR register control the

There are 2 types of activation for the external hardware interrupts.

INT1 can be edge or level triggered, but INT2 can be edge

The MCUCR & MCUCSR registers decides the triggering options of the external

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 7

MCUCR:

This register decides the triggering options of the external hardware interrupts
INT0 and INT1.

ISC01 & ISC00 (Interrupt Sense Control Bits):

 These bits define the level or edge on the external INT0 pin that activate the
interrupt as shown in table below.

 ISC11 &ISC10:

 These bits define the level or edge on the external INT1 pin that activate the
interrupt as shown in table below.

MCUSCR:
This register decides the triggering options of the external hardware interrupt
INT2.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

ISC2: This bit controls the INT2 interrupt trigger condition.

• ISC2 = 0: the interrupt is detected on falling edge.
• ISC2 = 1: the interrupt is detected on rise edge.

GIFR:

When an external interrupt is in an edge
edge, or change level), upon triggering an interrupt request, the related INTFx flag
becomes set.

If the interrupt is active (the INTx bit is set and the I
AVR will jump to the corresponding interrupt vector location and the INTFx flag
will be cleared automatically, otherwise, the flag remains set. The flag can be
cleared by writing a one to it.

In other words

• INTF1: When ‘1’ on this bit trigger INT1 Interrupt when INT1 bit of GICR
and I bit of SREG is one.

• INTF0: When ‘1’ on this bit t
and I bit of SREG is one.

• INTF2: When ‘1’ on this bit trigger INT2 Interrupt when INT2 bit of GICR
and I bit of SREG is one.

This bit controls the INT2 interrupt trigger condition.
ISC2 = 0: the interrupt is detected on falling edge.
ISC2 = 1: the interrupt is detected on rise edge.

When an external interrupt is in an edge-triggered mode (falling edge, rising
change level), upon triggering an interrupt request, the related INTFx flag

If the interrupt is active (the INTx bit is set and the I-bit in SREG is one), the
AVR will jump to the corresponding interrupt vector location and the INTFx flag
will be cleared automatically, otherwise, the flag remains set. The flag can be
cleared by writing a one to it.

When ‘1’ on this bit trigger INT1 Interrupt when INT1 bit of GICR
and I bit of SREG is one.

When ‘1’ on this bit trigger INT0 Interrupt when INT0 bit of GICR
and I bit of SREG is one.

When ‘1’ on this bit trigger INT2 Interrupt when INT2 bit of GICR
and I bit of SREG is one.

8

triggered mode (falling edge, rising
change level), upon triggering an interrupt request, the related INTFx flag

bit in SREG is one), the
AVR will jump to the corresponding interrupt vector location and the INTFx flag
will be cleared automatically, otherwise, the flag remains set. The flag can be

When ‘1’ on this bit trigger INT1 Interrupt when INT1 bit of GICR

rigger INT0 Interrupt when INT0 bit of GICR

When ‘1’ on this bit trigger INT2 Interrupt when INT2 bit of GICR

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 9

Interrupt Priority:

If two interrupts are activated at the same time, the interrupt with the higher
priority is served first. The priority of each interrupt is related to the address of that
interrupt in the interrupt vector.

The interrupt that has a lower address, has a higher priority.

For example, the address of external interrupt 0 is 2, while the address of
external interrupt 2 is 6; thus, external interrupt 0 has a higher priority, and if both
of these interrupts are activated at the same time, extern al interrupt 0 is served
first.

Interrupt inside an interrupt:

What happens if the AVR is executing an ISR belonging to an interrupt and
another interrupt is activated?

When the AVR begins to execute an ISR, it disables the I-bit of the SREG
register, causing all the interrupts to be disabled, and no other interrupt occurs
while serving the current interrupt.

When the RETI instruction is execute d, the AVR enables the I-bit, causing
the other interrupts are to be served.

If you want another interrupt (with any priority) to be served while the
current interrupt is being served you can set the I-bit using the SEI instruction. But
do it with care.

For example, in a low-level-triggered external interrupt, enabling the I-bit
while the pin is still active will cause the ISR to be reentered infinitely, causing the
stack to overflow with unpredictable consequences.

Interrupt latency:

The time from the moment an interrupt is activated to the moment the CPU
starts to execute the task is called the interrupt latency. This latency is 4 machine
cycle times.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 10

During this time the PC register is pushed on the stack and the I-bit of the
SREG register clears, causing all the interrupts to be disabled. The duration of the
interrupt latency can be affected by the type of instruction that the CPU is
executing when the interrupt comes in, since the CPU finishes the execution of the
current instruction before it serves the interrupt. It takes slightly longer in cases
where the instruction being executed lasts for two (or more) machine cycles (e.g.,
MUL) compared to the instructions that last for only one instruction cycle (e.g.,
ADD).

INTERRUPT PROGRAMMING IN C:

 In C language there is no instruction to manage the interrupts. So, in
WinAVR the following have been added to manage the interrupts:

 Interrupt include file: We should include the interrupt header file if we
want to use interrupts in our program. Use the following instruction:

#include <avr\ interrupt .h>

cli () and sei (): In Assembly, the CLI and SEI Instructions clear and set
the I-bit of the SREG register, respectively. In WinAVR, the cli () and sei ()
macros do the same tasks.

 Defining ISR: To write an ISR (interrupt service routine) for an interrupt we
use the following structure:

ISR(interrupt vector name)
{

//our program
}

For the interrupt vector namewe must use the ISR names in Table shown below.

For example, the following TSR serves the Timer0 compare match interrupt:

ISR (TIMER0_COMP_vect)
{
}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 11

Interrupt Vector name in WinAVR
External Interrupt request 0 INT0_vect
External Interrupt request 1 INT1_vect
External Interrupt request 2 INT2_vect
Time/Counter2 Compare Match TIMER2_COMP_vect
Time/Counter2 Overflow TIMER2_OVF_vect
Time/Counter1 Capture Event TIMER1_CAPT_vect
Time/Counter1 Compare Match A TIMER1_ COMPA_vect
Time/Counter1 Compare Match B TIMER1_ COMPB_vect
Time/Counter1 Overflow TIMER1_OVF_vect
Time/Counter0 Compare Match TIMER0_COMP_vect
Time/Counter0 Overflow TIMER0_OVF_vect
SPI Transfer complete SPI_STC_vect
USART, Receive complete USART0_RX_vect
USART, Data Register Empty USART0_UDRE_vect
USART, Transmit Complete USART0_TX_vect
ADC Conversion complete ADC_vect
EEPROM ready EE_RDY_vect
Analog Comparator ANALOG_COMP_vect
Two-wire Serial Interface TWI_vect
Store Program Memory Ready SPM_RDY_vect

Fig: interrupt Vector Names for WinAVR

Example 1:

Assume that the INT0 pin is connected to a switch that is normally high.
Write a program that toggles PORTC.3, whenever INT0 pin goes low. Use the
external interrupt in level-triggered mode.

Solution:

#include <avr/io.h>
#include <avr/irtterrupt.h>
int main ()

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 12

{
DDRC = 1<<3; //PC3 as an output
PORTD = 1<<2; //pull-up activated
GICR = (1<<INTO); //enable external interrupt 0
sei (); //enable interrupts
while (1); //wait here

}
ISR (INT0_vect) //ISR for external interrupt 0
{

PORTC ^= (l<<3); //toggle PORTC.3
}

Example 2:

Rewrite Example 1, so that whenever INT0 goes low, it toggles PORTC.3 only
once.

Solution:

#include <avr/io.h>
#include <avr/irtterrupt.h>
int main ()
{

DDRC = 1<<3; //PC3 as an output
PORTD = 1<<2; //pull-up activated
MCUCR = 0x02; //make INT0 falling edge triggered
GICR (1<<INTO); //enable external interrupt 0
sei (); //enable interrupts
while (1); //wait here

}
ISR (INT0_vect) //ISR for external interrupt 0
{

PORTC ^= (1<<3); //toggle PORTC.3
}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 13

TIMER Interrupts

AVR Timers:

AVR timers have a lot of complex uses, but their essential purpose is to measure
time.

They work in an asynchronous manner, i.e. they run parallel to the
microcontroller’s core code. This is possible only because the timers have a
separate circuit for their function.

The smallest amount of time that a timer can measure is determined by the
frequency of the clock source which the microcontroller uses. For example if the
microcontroller uses a 4MHz crystal as the clock source, then the smallest time it
can measure is 1/4000000th of a second.

Timers as registers:

So basically, a timer is a register, but not a normal one. The value of this
register increases/decreases automatically.

• In AVR, timers are of two types:
o 8-bit and 16-bit timers.

• In an 8-bit timer, the register used is 8-bit wide
• In 16-bit timer, the register width is of 16 bits.
• This means that the 8-bit timer is capable of counting 2^8=256 steps

from 0 to 255

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 14

• 16 bit timer is capable of counting 2^16=65536 steps from 0 to 65535.
• Due to this feature, timers are also known as counters.
• Once they reach their MAX value it returns to its initial value of zero.

o We say that the timer/counter overflows.
o Shown in above figure.

In ATMEGA32, we have three different kinds of timers:

• TIMER0 - 8-bit timer
• TIMER1 – 16-bit timer
• TIMER2 – 8-bit timer

The timer is totally independent of the CPU. Thus, it runs parallel to the
CPU and there is no CPU’s intervention.

Apart from normal operation, these three timers can be either operated in

• Normal mode
• CTC mode
• PWM mode

Timer Concepts:

Basic Concepts: We know the following formula:

 Now let’s assume that we have an external crystal XTAL of 4 MHz, Hence,
the CPU clock frequency is 4 MHz

• As we discussed that the timer counts from 0 to TOP.
• For an 8-bit timer, it counts from 0 to 255
• For a 16-bit timer it counts from 0 to 65535.
• After that, they overflow.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 15

Let’s the timer’s value is zero now.

To go from 0 to 1, it takes one clock pulse. To go from 1 to 2, it takes
another clock pulse. To go from 2 to 3, it takes one more clock pulse. And so on.

For F_CPU = 4 MHz, time period T = 1/4M = 0.00025 ms. Thus for every
transition (0 to 1, 1 to 2, etc), it takes only 0.00025 ms

Let us assume we need a delay of 10 ms. This maybe a very short delay, but
for the microcontroller which has a resolution of 0.00025 ms, it’s quite a long
delay.

To get an idea of how long it takes, let’s calculate the timer count from the
following formula:

 Substitute Required Delay = 10 ms and Clock Time Period = 0.00025 ms,
and we will getTimer Count = 39999

 Now, to achieve this, we definitely cannot use an 8-bit timer (as it has an
upper limit of 255, after which it overflows). Hence, we use a 16-bit timer (which
is capable of counting up to 65535) to achieve this delay.

 To achieve this, we cannot use an 8-bit timer (as it has an upper limit of
255). Hence, we use a 16-bit timer (which is capable of counting up to 65535) to
achieve this delay.

The Prescaler:

Assuming F_CPU = 4 MHz and a 16-bit timer (MAX = 65535), and
substituting in the above formula, we can get a maximum delay of 16.384 ms.

Now what if we need a greater delay,

Example: For 20 ms.

 Suppose if we decrease the F_CPU from 4 MHz to 0.5 MHz (i.e. 500
kHz), then the clock time period increases to 1/500k = 0.002 ms.Now if we
substitute Required Delay = 20 ms and Clock Time Period = 0.002 ms, we get

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 16

Timer Count = 9999. As we can see, this can easily be achieved using a 16-bit
timer. At this frequency, a maximum delay of 131.072 ms can be achieved.

 This technique of frequency division is called prescaling. We do not reduce
the actual F_CPU. The actual F_CPU remains the same (at 4 MHz in this case). So
basically, we derive a frequency from it to run the timer. Thus, while doing so, we
divide the frequency and use it.There is a provision to do so in AVR by setting
some bits which we will discuss later.

 We cannot use prescaler freely.There is a trade-off between resolution
and duration.The resolution has also increased from 0.00025 ms to 0.002 ms. this
means each tick will take 0.002 ms that causes reduction of accuracy.

Choosing Prescalers:

The AVR offers us the following prescaler values to choose from: 8, 64, 256
and 1024. A prescaler of 8 means the effective clock frequency will be F_CPU/8.

Now substituting each of these values into the above formula, we get
different values of timer value.

Let us assume required delay: 184 ms and F_CPU: 4 M Hz.

The results are summarized as below:

Now out of these four prescalers, 8 cannot be used as the timer value
exceeds the limit of 65535. Also, since the timer always takes up integer values,
we cannot choose 1024 as the timer count is a decimal digit. Hence, we see that
prescaler values of 64 and 256 are feasible. But out of these two, we choose 64 as
it provides us with greater resolution. We can choose 256 if we need the timer for a
greater duration elsewhere.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Thus, we always choose
the feasible limit (255 or 65535)
integer.

Fig: Timer0 Prescalar/ Selector

AVR Timers – TIMER0

 Since timer is a peripheral, it can be activated by setting some bits in
some registers.

TCNT0 Register:

The Timer/Counter Register,

Fig: TCNT0 Register

The value of the counter is stored here and increases/decreases
automatically. Data can be both read/written from this register.

Thus, we always choose prescalar which gives the counter value within
(255 or 65535) and the counter value should always be an

/ Selector

TIMER0 :

Since timer is a peripheral, it can be activated by setting some bits in

TCNT0 Register:

Timer/Counter Register, shown in figure below

The value of the counter is stored here and increases/decreases
automatically. Data can be both read/written from this register.

17

which gives the counter value within
and the counter value should always be an

Since timer is a peripheral, it can be activated by setting some bits in

shown in figure below

The value of the counter is stored here and increases/decreases
automatically. Data can be both read/written from this register.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Now we know where the counter value lies. But this register
activated unless we activate the timer! Thus we need to set the timer up by
using Timer Counter Control Register.

TCCR0 Register:

The Timer/Counter Control Register,

Fig: TCCR0 Register

• Clock Select Bits (CS 02: 00):
choosing proper prescaler. The possible combinations are
shown below.

CS02 CS01 CS00
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

1 1 1

Fig: TCCR0 PrescalerDefinitions

o Ex

Now we know where the counter value lies. But this register
activated unless we activate the timer! Thus we need to set the timer up by
using Timer Counter Control Register.

TCCR0 Register:

Timer/Counter Control Register,shown in figure below

Clock Select Bits (CS 02: 00): Used toset the timer up by
choosing proper prescaler. The possible combinations are
shown below.

CS00 Description
0 No clock source (Timer/Counter stopped)
1 ClkI/O/1 (No prescaling)
0 ClkI/O/8 (From prescaler)
1 ClkI/O/64 (From prescaler)
0 ClkI/O/256 (From prescaler)
1 ClkI/O/1024 (From prescaler)
0 External clock source on T0 pin. Clock on

falling edge.
1 External clock source on T0 pin. Clock on rising

edge.
scalerDefinitions

Example code:
� TCCR0 |= (1 << CS00); // Initializing the

counter in Noprecaling
� TCCR0 |= (1 << CS02)|(1 << CS00);

timer with prescaler = 1024

18

Now we know where the counter value lies. But this register won’t be
activated unless we activate the timer! Thus we need to set the timer up by

shown in figure below

toset the timer up by
choosing proper prescaler. The possible combinations are

No clock source (Timer/Counter stopped)

External clock source on T0 pin. Clock on

External clock source on T0 pin. Clock on rising

Initializing the

TCCR0 |= (1 << CS02)|(1 << CS00); // set up

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 19

• Bit 6,3 – WGM01:00 – Wave Generation Mode – Just like in
TIMER1, we choose the type of wave mode from here as
follows

Mode WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter
Mode of
operation

TOP Update of
OCR0

TOV0
Flag Set-
on

0 0 0 Normal 0xFF Immediate MAX
1 0 1 PWM, Phase

correct
0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX
3 1 1 Fast PWM 0xFF TOP MAX
Fig: Wave Generation Mode Bit Description

• Bit 5:4 – COM01:00 – Compare Match Output Mode –
o Controls the behavior of the OC0 (PB3) pin depending

upon the WGM mode –
� non-PWM,
� Phase Correct PWM mode and
� Fast PWM mode.

o The selection options of non-PWM mode are as follows.

COM01 COM00 Description
0 0 Normal port operation, OC0 disconnected
0 1 Toggle OC0 on compare match
1 0 Clear OC0 on compare match
1 1 Set OC0 on compare match

Fig: Compare Output Mode, non-PWM

• Bit 7 – FOC0 – Force Output Compare –
o When set to ‘1’

� Forces an immediate compare match and affects
the behavior of OC0 pin.

o When clear to ‘0’
� To ensure compatibility with future devices, this

bit must be set to ‘0’.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 20

OCR0 Register:

The Output Compare Register– OCR0 Register is shown in figure
below.

Fig: OCR0 Register

 The value to be compared (max 255) is stored in this register.

TIMSK Register:

The Timer/Counter Interrupt Mask Register, shown in figure
below:

Fig: TIMSK Register

It is a common register for all the three timers.

Bits (1:0):

• Correspond to TIMER0

• Bit0:
o Setting the bitTOIE0 to ’1′ enables the TIMER0 overflow interrupt.

• Bit 1:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 21

o OCIE0 – Timer/Counter0 Output Compare Match Interru pt
Enable

� Enables the firing of interrupt whenever a compare match occurs.

Bits (5:2):

• Correspond to TIMER1.

• Bit 2 – TOIE1 – Timer/Counter1 Overflow Interrupt
Enable bit

o Enables the overflow interrupt of TIMER1.
• Other bits are related to CTC mode

o Bit 4:3 –OCIE1A: B – Timer/Counter1, Output
Compare A/B Match Interrupt Enable bits.

� Enabling it ensures that an interrupt is fired
whenever a match occurs.

� Since there are two CTC channels, we have two
different bits OCIE1A and OCIE1B for them.

o Bit 5- TICIE1 Timer 1 Input Capture Interrupt
Enable

� TICIE1= 0 Disables Timerl input capture
interrupt

� TICIE1= I Enables Timer 1 input capture
interrupt

Bits (7:6):

• Correspond to TIMER2
• Setting the bit TOIE2 to ’1′ enables the TIMER0 overflow

interrupt.

• OCIE0 – Timer/Counter0 Output Compare Match
Interrupt Enable

o Enables the firing of interrupt whenever a compare
match occurs.

TIFR Register:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 22

The Timer/Counter Interrupt Flag Register, shown in figure
below.

Fig: TIFR Register

This is also a register shared by all the timers.

Bits (1:0):

• Correspond to TIMER0

• Bit 0:
o TOV0(Timer/Counter1 Overflow Flag) bit is set (one) whenever TIMER0
overflows.
� This bit is reset (zero) whenever the Interrupt Service Routine (ISR) is
executed.
� If there is no ISR to execute, we can clear it manually by writing one to it.
• Bit 1:
o OCF0 – Output Compare Flag 0
� Sets whenever a compare match occurs.
� It is cleared automatically whenever the corresponding ISR is executed.
� Alternatively it is cleared by writing ‘1’ to it.

Bits (5:2):

• Correspond to TIMER1.

• Bit 2 – TOV1 – Timer/Counter1 Overflow Flag bit is set to 1 whenever
the timer overflows
o This bit is reset (zero) whenever the Interrupt Service Routine (ISR) is
executed.
o If there is no ISR to execute, we can clear it manually by writing one to it.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 23

• Bit 4:3 – OCF1A: B – Timer/Counter1, Output Compare A/B Match
Flag Bit.
o This bit is set (one) by the AVR whenever a match occurs
� TCNT1 becomes equal to OCR1A (or OCR1B).
� It is cleared automatically whenever the corresponding Interrupt Service
Routine (ISR) is executed.
� Alternatively, it can be cleared by writing ’1′ to it!

Bits (7:6):

• Correspond to TIMER2
• TOV2 bit is set (one) whenever TIMER2 overflows.
o This bit is reset (zero) whenever the Interrupt Service Routine (ISR) is
executed.
o If there is no ISR to execute, we can clear it manually by writing one to it.

Example: (Without Using interrupts)

To flash an LED every 8 ms and we have an XTAL of 16 MHz. We can use a
prescaler of 1024. Now refer to the descriptions of clock select bits as shown in the
TCCR0 register.

Code:

#include <avr/io.h>
void timer0_init()
{
 // set up timer with prescaler = 1024
 TCCR0 |= (1 << CS02)|(1 << CS00);
 // initialize counter
 TCNT0 = 0;
}
int main(void)
{
 // connect led to pin PC0
 DDRC |= (1 << 0);
 // initialize timer

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 24

 timer0_init();
 // loop forever
 while(1)
 {
 // check if the timer count reaches 124
 if (TCNT0 >= 124)
 {
 PORTC ^= (1 << 0); // toggles the led
 TCNT0 = 0; // reset counter
 }
 }
}

Example: (Using Interrupts)

To flash the LED every 50 ms. With CPU frequency 16 MHz,

Even a maximum delay of 16.384 ms can be achieved using a 1024
prescaler.The concept here is that the hardware generates an interrupt every time
the timer overflows. Since the required delay is greater than the maximum possible
delay, obviously the timer will overflow. And whenever the timer overflows, an
interrupt is fired. Now the question is how many times should the interrupt be
fired?

For this, let’s do some calculation. Let’s choose a prescaler, say 256. Thus,
as per the calculations, it should take 4.096 ms for the timer to overflow. Now as
soon as the timer overflows, an interrupt is fired and an Interrupt Service Routine
(ISR) is executed. Now,

50 ms ÷ 4.096 ms = 12.207

Thus, in simple terms, by the time the timer has overflown 12 times, 49.152
ms would have passed. After that, when the timer undergoes 13th iteration, it
would achieve a delay of 50 ms. Thus, in the 13th iteration, we need a delay of 50
– 49.152 = 0.848 ms. At a frequency of 62.5 kHz (prescaler = 256), each tick takes
0.016 ms. Thus to achieve a delay of 0.848 ms, it would require 53 ticks. Thus, in
the 13th iteration, we only allow the timer to count up to 53, and then reset it. All
this can be achieved in the ISR as follows:

Code:

#include <avr/io.h>

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 25

#include <avr/interrupt.h>
// global variable to count the number of overflows
volatile uint8_t tot_overflow;
// initialize timer, interrupt and variable
void timer0_init()
{

 TCCR0 |= (1 << CS02);// set up timer with prescaler = 256
 TCNT0 = 0;// initialize counter
 TIMSK |= (1 << TOIE0); // enable overflow interrupt
 sei();// enable global interrupts
 tot_overflow = 0;// initialize overflow counter variable

}
// TIMER0 overflow interrupt service routine called whenever TCNT0

overflows
ISR(TIMER0_OVF_vect)
{

 // keep a track of number of overflows
 tot_overflow++;

}
int main(void)
{

 // connect led to pin PC0
 DDRC |= (1 << 0);
 // initialize timer
 timer0_init();
 // loop forever
 while(1)
 {
 // check if no. of overflows = 12
 if (tot_overflow>= 12) // NOTE: '>=' is used
 {
 // check if the timer count reaches 53
 if (TCNT0 >= 53)
 {
 PORTC ^= (1 << 0); // toggles the led
 TCNT0 = 0; // reset counter
 tot_overflow = 0; // reset overflow counter
 }
 }
 }

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 26

}

AVR Timers – TIMER1:

 In addition to the usual timer/counter, Timer 1 contains one 16 bit input
capture register and two 16-bit outputs compare registers.

 The input capture register is used for measuring pulse widths or
capturingtimes. The output compare registers are used for producing frequencies or
pulses from thetimer/counter to an output pin on the microcontroller.

 TCNT1 Register:

 The Timer/Counter1 Register, shown in figure below.

Fig: TCNT1 Register.

It is 16 bits wide since the TIMER1 is a 16-bit register. TCNT1H represents
the HIGH byte whereas TCNT1L represents the LOW byte. The timer/counter
value is stored in these bytes.

Timer/counter control register 1 (TCCR1): the ATMegal6 timer /control
register for Timer 1 is actually composed oftwo registers, TCCR1A and
TCCR1B.

TCCR1A controls the compare modes and the pulse width modulation
modes of Timer1.

TCCR1B controls the prescaler and input multiplexer for Timer 1, as well
asthe input capture modes.

TCCR1A Register:

The Timer/Counter1 Control RegisterA,shown in figure below.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 27

Fig: TCCR1A Register

• The behavior changes depending upon the following modes:
o Non-PWM mode (normal / CTC mode)
o Fast PWM mode
o Phase Correct / Phase & Frequency Correct PWM mode

• Bit 7:6 – COM1A1:0 and Bit 5:4 – COM1B1:0
o Compare Output Mode for Compare Unit A/B.
o These bits control the behavior of the Output Compare (OC)

pins.

COM1A1/
COM1B1

COM1A0/
COM1B0

Description

0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on compare match.
1 0 Clear OC1A/OC1B on compare match (Set output to

low level)
1 1 Set OC1A/OC1B on compare match (Set output to

high level)
Table: Compare Output Mode, non-PWM

• Bit 3:2 – FOC1A: B – Force Output Compare for Compare Unit
A/B.

o These bits are write only bits.
o They are active only in non-PWM mode.
o For ensuring compatibility with future devices, these bits must

be set to zero (which they already are by default).

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 28

o Setting them to ‘1’ will result in an immediate forced compare
match and the effect will be reflected in the OC1A/OC1B pins.

o The thing to be noted is that FOC1A/FOC1B will not
generate any interrupt, nor will it clear the timer in CTC
mode.

TCCR1B Register:

The Timer/Counter1 Control Register Bshown in figure below.

Fig: TCCR1B Register

The bit 2:0 – CS12:10 are the Clock Select Bits of TIMER1. Their
selection is as follows.

CS12 CS11 CS10 Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 ClkI/O/1 (No prescaling)
0 1 0 ClkI/O/8 (From prescaler)
0 1 1 ClkI/O/64 (From prescaler)
1 0 0 ClkI/O/256 (From prescaler)
1 0 1 ClkI/O/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling

edge.
1 1 1 External clock source on T1 pin. Clock on rising

edge.
Fig: TCCR1B PrescalerDefinitions

Bits 7:6 in TCCR1B:

• ICNC1(Input Capture Noise Canceller) (1 = enabled)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 29

• ICES1(Input Capture Edge Select) (1 = rising edse, 0 = falling
edge)

Bits 1:0 in TCCR1A (WGM11 & WGM11) and

Bits 4:3 in TCCR1B (WGM13&WGM12) are Wave Generation Mode
Bits which are used to select mode shown in figure below.

Mode WGM1
3

WGM1
2
(CTC1)

WGM11
(PWM1
1)

WGM10
(PWM10)

Timer/Counter Mode of operation Top Update of
OCR1x

TOV1
Flag Set
on

0 0 0 0 0 Normal 0xFFFF Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCR1A Immediate MAX
5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP
6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP
7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP
8 1 0 0 0 PWM, Phase & Frequency correct ICR1 BOTTOM BOTTOM
9 1 0 0 1 PWM, Phase & Frequency correct OCR1A BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX
13 1 1 0 1 Reserved - - -
14 1 1 1 0 Fast PWM ICR1 TOP TOP
15 1 1 1 1 Fast PWM OCR1A TOP TOP

Fig:Wave Generation Mode Bit Description

In pin configuration of ATMEGA16/32, we can see the pins PB3, PD4, PD5
and PD7. Their special functions are mentioned in the brackets (OC0, OC1A,
OC1B and OC2). These are the Output Compare pins of TIMER0, TIMER1 and
TIMER2 respectively shown in figure below.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 30

Fig: ATmega 16/ 32 Pin description

OCR1A and OCR1B Registers:

We must tell the AVR to reset the timer as soon as its value reaches such
and such value. So, the question is, how do we set such and such values? The
Output Compare Register 1A – OCR1A and the Output Compare Register 1B
– OCR1B are utilized for this purpose.

Fig: OCR1A Register

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 31

Fig: OCR1B Register

Since the compare value will be a 16-bit value (in between 0 and 65535),
OCR1A and OCR1B are 16-bit registers. In ATMEGA16/32, there are two CTC
channels – A and B. We can use any one of them or both. Let’s use OCR1A.

Example:

OCR1A = 24999; // timer compare value

Example:
To flash an LED every 2 seconds, i.e. at a frequency of 0.5 Hz. We have an XTAL
of 16 MHz.
Code:

#include <avr/io.h>
#include <avr/interrupt.h>

// global variable to count the number of overflows
volatile uint8_t tot_overflow;
// initialize timer, interrupt and variable
void timer1_init()
{

 // set up timer with prescaler = 8
 TCCR1B |= (1 << CS11);
 // initialize counter
 TCNT1 = 0;
// enable overflow interrupt
 TIMSK |= (1 << TOIE1);
 sei();// enable global interrupts
// initialize overflow counter variable
 tot_overflow = 0;

}
// TIMER1 overflow interrupt service routine called whenever TCNT1
overflows
ISR(TIMER1_OVF_vect)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 32

{
// keep a track of number of overflows
 tot_overflow++;
 // check for number of overflows here itself
 // 61 overflows = 2 seconds delay (approx.)
 if (tot_overflow >= 61) // NOTE: '>=' used instead of '=='
 {

 PORTC ^= (1 << 0); // toggles the led
// no timer reset required here as the timer is reset every
time it overflows
 tot_overflow = 0; // reset overflow counter

 }
}
int main(void)
{

// connect led to pin PC0
 DDRC |= (1 << 0);
 timer1_init(); // initialize timer
 while(1)// loop forever
 {

// do nothing
 // comparison is done in the ISR itself

 }
}

AVR Timers – TIMER2:

TIMER2 is an 8-bit timer (like TIMER0); most of the registers are similar to
that of TIMER0 registers. Apart from that, TIMER2 offers a special feature which
other timers don’t – Asynchronous Operation.

TCNT2 Register:

In the Timer/Counter registershown in figure below.

Fig: TCNT2 Register

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 33

TCCR2 Register:

The Timer/Counter Control Registeris shown in figure below.

Fig: TCCR2 Register

In TIMER0/1 the prescalers available are 8, 64, 256 and 1024, whereas in
TIMER2, we have 8, 32, 64, 128, 256 and 1024.

The bit 2:0 – CS22:20 are the Clock Select Bits of TIMER2. Their
selection is as follows.

CS22 CS21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 ClkT2S/1 (No prescaling)
0 1 0 ClkT2S/8 (From prescaler)
0 1 1 ClkT2S/32 (From prescaler)
1 0 0 ClkT2S/64 (From prescaler)
1 0 1 ClkT2S/128 (From prescaler)
1 1 0 ClkT2S/256 (From prescaler)
1 1 1 ClkT2S/1024 (From prescaler)

Fig: Clock Select Bit Description

Example:

To flash an LED every 50 ms. We have an XTAL of 16 MHz.

Code:

#include <avr/io.h>
#include <avr/interrupt.h>
// global variable to count the number of overflows
volatile uint8_t tot_overflow;
// initialize timer, interrupt and variable
void timer2_init()
{

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 34

// set up timer with prescaler = 256
 TCCR2 |= (1 << CS22)|(1 << CS21);
// initialize counter
 TCNT2 = 0;
 TIMSK |= (1 << TOIE2); // enable overflow interrupt
 sei();// enable global interrupts
 // initialize overflow counter variable
 tot_overflow = 0;

}
// TIMER0 overflow interrupt service routine called whenever TCNT0
overflows
ISR(TIMER2_OVF_vect)
{

 tot_overflow++;// keep a track of number of overflows
}
int main(void)
{

 DDRC |= (1 << 0); // connect led to pin PC0
timer2_init(); // initialize timer
while(1) // loop forever
 {

 // check if no. of overflows = 12
 if (tot_overflow >= 12) // NOTE: '>=' is used
 {

if (TCNT2 >= 53) // check if the timer count reaches 53
 {

 PORTC ^= (1 << 0); // toggles the led
 TCNT2 = 0; // reset counter
 tot_overflow = 0; // reset overflow
counter

 }
 }

 }
}

AVR Timers – CTC Mode:

It is a special mode of operation – Clear Timer on Compare (CTC) Mode.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 35

We had two timer values with us – Set Point (SP) and Process Value (PV).

In everytime, we used to compare the process value with the set point. Once
the process value becomes equal (or exceeds) the set point, the process value is
reset.

Example:

max = 39999; // max timer value set <--- set point

// some code here

// ...

// ...

// TCNT1 <--- process value

if (TCNT1 >= max) // process value compared with the set point

{

 TCNT1 = 0; // process value is reset

}

// ...

Since TIMER1 is a 16-bit timer, it can count up to a maximum of 65535.
Here, what we desire is that the timer (process value) should reset as soon as its
value becomes equal to (or greater than) the set point (Maximum Value) of 39999.

 So basically, the CTC Mode implements the same thing, but unlike the
above example, it implements it in hardware. Which means that we no longer need
to worry about comparing the process value with the set point every time! This will
not only avoid unnecessary wastage of cycles, but also ensure greater accuracy (i.e.
no missed compares, no double increment, etc).

 Hence, this comparison takes place in the hardware itself, inside the AVR
CPU! Once the process value becomes equal to the set point, a flag in the
status register is set and the timer is reset automatically! Thus goes the name –

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 36

CTC – Clear Timer on Compare! Thus, all we need to do is to take care of the
flag, which is much faster to execute.

CTC mode - Timer 1:

Example:

Let’s take up a problem to understand this concept. We need to flash an LED
every 100 ms. we have a crystal of XTAL 16 MHz.

Now, given XTAL = 16 MHz, with a prescaler of 64, the frequency of the
clock pulse reduces to 250 kHz. With a Required Delay = 100 ms, we get the
Timer Count to be equal to 24999. Up until now, we would have let the value of
the timer increment, and check its value every iteration, whether it’s equal to
24999 or not, and then reset the timer. Now, the same will be done in hardware!
We won’t check its value every time in software! We will simply check whether
the flag bit is set or not, that’s all.

Using CTC Mode:

TCCR1A and TCCR1B Registers:

We are already aware of the Clock Select Bits – CS12:10 in TCCR1B.
Hence, right now, we are concerned with the Wave Generation Mode Bits –
WGM13:10. These bits are spread across both the TCCR1 registers (A and B).
Thus we need to be a bit careful while using them. Their selection is as follows:

Mode WGM1
3

WGM1
2
(CTC1)

WGM11
(PWM1
1)

WGM10
(PWM1
0)

Timer/Counter Mode of operation Top Update of
OCR1x

TOV1
Flag Set
on

0 0 0 0 0 Normal 0xFFFF Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCR1A Immediate MAX
5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 37

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP
7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP
8 1 0 0 0 PWM, Phase & Frequency

correct
ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase & Frequency
correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX
13 1 1 0 1 Reserved - - -
14 1 1 1 0 Fast PWM ICR1 TOP TOP
15 1 1 1 1 Fast PWM OCR1A TOP TOP

Fig: Wave Generation Mode Bit Description

We can see that there are two possible selections for CTC Mode. Practically,
both are the same, except the fact that we store the timer compare value in different
registers. Right now, let’s move on with the first option (0100). Thus, the
initialization of TCCR1A and TCCR1B is as follows.

TCCR1A |= 0; // not required since WGM11:0, both are zero (0)

TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10); // Mode = CTC,
Prescaler = 64

OCR1A and OCR1B Registers:

We must tell the AVR to reset the timer as soon as its value reaches such
and such value. So, the question is, how do we set such and such values? The
Output Compare Register 1A – OCR1A and the Output Compare Register 1B
– OCR1B are utilized for this purpose.

Since the compare value will be a 16-bit value (in between 0 and 65535),
OCR1A and OCR1B are 16-bit registers. In ATMEGA16/32, there are two CTC
channels – A and B. We can use any one of them or both. Let’s use OCR1A.

Example:

OCR1A = 24999; // timer compare value

TIFR Register:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

We are interested in
Compare A/B Match Flag Bit
match occurs i.e. TCNT1 becomes equal to OCR1A (or OCR1B). It is cleared
automatically whenever the corresponding Interrupt Service Routine (ISR) is
executed. Alternatively, it can be cleared by writing ’1

Code:

#include <avr/io.
// initialize timer, interrupt and variable
void timer1_init()
{
// set up timer with prescaler = 64 and CTC mode
 TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10);
// initialize counter
 TCNT1 = 0;
 // initialize compare value
 OCR1A = 24999;
}

int main(void)
{
// connect led to pin PC0
 DDRC |= (1 << 0);
// initialize timer
 timer1_init();
// loop forever
while(1)
 {
// check whether the flag bit is set if set, it means that there has been a

compare match and the timer has been
the led

if (TIFR & (1 << OCF1A))
 {

We are interested in Bit 4:3 – OCF1A: B – Timer/Counter1, Output
Compare A/B Match Flag Bit. This bit is set (one) by the AVR whenever a
match occurs i.e. TCNT1 becomes equal to OCR1A (or OCR1B). It is cleared
automatically whenever the corresponding Interrupt Service Routine (ISR) is
executed. Alternatively, it can be cleared by writing ’1′ to it!

#include <avr/io.h>
// initialize timer, interrupt and variable
void timer1_init()

// set up timer with prescaler = 64 and CTC mode
TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10);

// initialize counter
TCNT1 = 0;
// initialize compare value
OCR1A = 24999;

int main(void)

// connect led to pin PC0
DDRC |= (1 << 0);

// initialize timer
timer1_init();

// check whether the flag bit is set if set, it means that there has been a
compare match and the timer has been cleared use this opportunity to toggle

if (TIFR & (1 << OCF1A)) // NOTE: '>=' used instead of '=='

38

Timer/Counter1, Output
the AVR whenever a

match occurs i.e. TCNT1 becomes equal to OCR1A (or OCR1B). It is cleared
automatically whenever the corresponding Interrupt Service Routine (ISR) is

TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10);

// check whether the flag bit is set if set, it means that there has been a
cleared use this opportunity to toggle

// NOTE: '>=' used instead of '=='

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 PORTC ^= (1 << 0);
 }
 // wait! we are not done yet!
 // clear the flag bit manually si
 // clear it by writing '1' to it (as per the datasheet)
 TIFR |= (1 << OCF1A);
// yeah, now we are done!
 }
}

Using Interrupts with CTC Mode:

In the previous methodology, we simply used the CTC Mode of operation.
We used to check every time for the flag bit (OCF1A). Now let’s shift this
responsibility to the AVR itself! Yes, now we
at all! The AVR will compa
sets the flag bit OCF1A, and
interrupt, that’s it.

There are three kinds of interrupts in AVR

• Overflow,

• Compare

• Capture.

We have already discussed the

TIMSK Register:

 The Bit 4:3 –OCIE1A: B
Match Interrupt Enable bits are of our interest here. Enabling it ensures that an
interrupt is fired whenever a match occurs. Since there are two CTC channels, we
have two different bits OCIE1A and OCIE1B for them.

PORTC ^= (1 << 0); // toggles the led

// wait! we are not done yet!
// clear the flag bit manually since there is no ISR to execute
// clear it by writing '1' to it (as per the datasheet)
TIFR |= (1 << OCF1A);

// yeah, now we are done!

Using Interrupts with CTC Mode:

In the previous methodology, we simply used the CTC Mode of operation.
every time for the flag bit (OCF1A). Now let’s shift this

responsibility to the AVR itself! Yes, now we do not need to check
at all! The AVR will compare TCNT1 with OCR1A. Whenever a match occurs, it
sets the flag bit OCF1A, and also fires an interrupt! We just need to attend to that

There are three kinds of interrupts in AVR –

We have already discussed the overflow interrupt.

OCIE1A: B – Timer/Counter1, Output Compare A/B
bits are of our interest here. Enabling it ensures that an

interrupt is fired whenever a match occurs. Since there are two CTC channels, we
have two different bits OCIE1A and OCIE1B for them.

39

nce there is no ISR to execute

In the previous methodology, we simply used the CTC Mode of operation.
every time for the flag bit (OCF1A). Now let’s shift this

 for the flag bit
re TCNT1 with OCR1A. Whenever a match occurs, it

fires an interrupt! We just need to attend to that

Timer/Counter1, Output Compare A/B
bits are of our interest here. Enabling it ensures that an

interrupt is fired whenever a match occurs. Since there are two CTC channels, we

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 40

 Whenever a match occurs (TCNT1 becomes equal to OCR1A = 24999), an
interrupt is fired (as OCIE1A is set) and the OCF1A flag is set. Now since an
interrupt is fired, we need an Interrupt Service Routine (ISR) to attend to the
interrupt. Executing the ISR clears the OCF1A flag bit automatically and the timer
value (TCNT1) is reset.

Code:
#include <avr/io.h>
#include <avr/interrupt.h>

// initialize timer, interrupt and variable
void timer1_init()
{

// set up timer with prescaler = 64 and CTC mode
 TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10);
 TCNT1 = 0; // initialize counter
 OCR1A = 24999;// initialize compare value
 TIMSK |= (1 << OCIE1A);// enable compare interrupt
sei();// enable global interrupts

}
// this ISR is fired whenever a match occurs hence, toggle led here

itself..
ISR (TIMER1_COMPA_vect)
{
 PORTC ^= (1 << 0);// toggle led here
}
int main(void)
{

DDRC |= (1 << 0);// connect led to pin PC0
 timer1_init(); // initialize timer

 while(1) // loop forever
 {
 // do nothing
 // whenever a match occurs, ISR is fired
 // toggle the led in the ISR itself
 // no need to keep track of any flag bits here
 }

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Using Hardware CTC Mode:

In the pin configuration of ATMEGA16/32,we can see
PD5 and PD7. Their special functions are mentioned in the brackets (OC0, OC1A,
OC1B and OC2). These are the Output Compare pins of TIMER0, TIMER1 and
TIMER2 respectively.

Here TCCR1A Register

Now time for us to concentrate on
COM1B1:0 – Compare Output Mode for Compare Unit A/B
control the behavior of the Output Compare (OC) pins. The behavior changes
depending upon the following modes:

• Non-PWM mode (normal / CTC mode)
• Fast PWM mode
• Phase Correct / Phase & Frequency Correct PWM mode

Right now we are concerned only with the CTC mode.

COM1A1/
COM1B1

COM1A0/
COM1B0

0 0
0 1
1 0

1 1

We choose the second option (01).
attend to any interrupts, nothing. Just set the timer to this mode. When
compare match occurs, the OC1A pin is automatically toggled.

Using Hardware CTC Mode:

In the pin configuration of ATMEGA16/32,we can see the pins PB3, PD4,
Their special functions are mentioned in the brackets (OC0, OC1A,

OC1B and OC2). These are the Output Compare pins of TIMER0, TIMER1 and

TCCR1A Registerplays major role to operate this mode.

Now time for us to concentrate on Bit 7:6 – COM1A1:0
Compare Output Mode for Compare Unit A/B

control the behavior of the Output Compare (OC) pins. The behavior changes
depending upon the following modes:

PWM mode (normal / CTC mode)
Fast PWM mode
Phase Correct / Phase & Frequency Correct PWM mode

Right now we are concerned only with the CTC mode.

Description

Normal port operation, OC1A/OC1B disconnected.
Toggle OC1A/OC1B on compare match.
Clear OC1A/OC1B on compare match (Set output to
low level)
Set OC1A/OC1B on compare match (Set output to
high level)

We choose the second option (01).No need to check any flag bit, no need to
attend to any interrupts, nothing. Just set the timer to this mode. When
compare match occurs, the OC1A pin is automatically toggled.

41

the pins PB3, PD4,
Their special functions are mentioned in the brackets (OC0, OC1A,

OC1B and OC2). These are the Output Compare pins of TIMER0, TIMER1 and

plays major role to operate this mode.

 and Bit 5:4 –
Compare Output Mode for Compare Unit A/B. These bits

control the behavior of the Output Compare (OC) pins. The behavior changes

Phase Correct / Phase & Frequency Correct PWM mode

Normal port operation, OC1A/OC1B disconnected.
Toggle OC1A/OC1B on compare match.

on compare match (Set output to

Set OC1A/OC1B on compare match (Set output to

No need to check any flag bit, no need to
attend to any interrupts, nothing. Just set the timer to this mode. Whenever a

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 42

But we need to compromise on the hardware. Only PD5 or PD4 (OC1A or
OC1B) can be controlled this way, which means that we should connect the LED
to PD5 (since we are using channel A) instead of PC0 or else.

Code:

#include <avr/io.h>
#include <avr/interrupt.h>

// initialize timer, interrupt and variable
void timer1_init()
{

// set up timer with prescaler = 64 and CTC mode
 TCCR1B |= (1 << WGM12)|(1 << CS11)|(1 << CS10);
// set up timer OC1A pin in toggle mode
 TCCR1A |= (1 << COM1A0);
// initialize counter
 TCNT1 = 0;
 // initialize compare value
 OCR1A = 24999;

}

int main(void)
{

 DDRD |= (1 << 5); // connect led to pin PD5
timer1_init(); // initialize timer
while(1) // loop forever
 {

 // do nothing
 // whenever a match occurs
 // OC1A is toggled automatically!
 // no need to keep track of any flag bits or ISR

 }
}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Forcing Compare Match:

Bit 3:2in TCCR1A –
Unit A/B .

• These bits are write only

• They are active only in non
• For ensuring compatibility with future devices, these bits must be set

to zero (which they
• Setting them to ‘1’

and the effect will be reflected in the OC1A/OC1B pins.

• The thing to be noted is that FOC1A/FOC1B will
interrupt, nor

CTC mode - Timer 0/ Timer 2:

 In this section we will discuss about the registers only.
0/ 2 is exactly in the same way of TIMER 1. So we will discuss about TIMER 0
now.

TCCR0 Register:

The Timer/Counter0 Control Register
follows:

• Bit 6:3 – WGM01:0
TIMER1, we choose the type of wave mode from here as follows.

– FOC1A: B – Force Output Compare for Compare

write only bits.
They are active only in non-PWM mode.
For ensuring compatibility with future devices, these bits must be set
to zero (which they already are by default).
Setting them to ‘1’ will result in an immediate forced compare match
and the effect will be reflected in the OC1A/OC1B pins.

The thing to be noted is that FOC1A/FOC1B will not
 will it clear the timer in CTC mode.

Timer 0/ Timer 2:

this section we will discuss about the registers only.CTC mode of TIMER
0/ 2 is exactly in the same way of TIMER 1. So we will discuss about TIMER 0

Timer/Counter0 Control Register– TCCR10 Register is as

WGM01:00 – Wave Generation Mode
TIMER1, we choose the type of wave mode from here as follows.

43

Force Output Compare for Compare

For ensuring compatibility with future devices, these bits must be set

will result in an immediate forced compare match
and the effect will be reflected in the OC1A/OC1B pins.

not generate any

CTC mode of TIMER
0/ 2 is exactly in the same way of TIMER 1. So we will discuss about TIMER 0

TCCR10 Register is as

Wave Generation Mode – Just like in
TIMER1, we choose the type of wave mode from here as follows.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 44

o Choose 10 for CTC mode.

Mode WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter
Mode of
operation

TOP Update of
OCR0

TOV0
Flag Set-
on

0 0 0 Normal 0xFF Immediate MAX
1 0 1 PWM, Phase

correct
0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX
3 1 1 Fast PWM 0xFF TOP MAX
Table: Wave Generation Mode Bit Description

• Bit 5:4 – COM01:00 – Compare Match Output Mode – They
control the behavior of the OC0 (PB3) pin

o depending upon the WGM mode –

� non-PWM,

� Phase Correct PWM mode

� Fast PWM mode.

o The selection options of non-PWM mode are as follows.

o Choose 01 to toggle the LED.

COM01 COM00 Description
0 0 Normal port operation, OC0 disconnected
0 1 Toggle OC0 on compare match
1 0 Clear OC0 on compare match
1 1 Set OC0 on compare match

Table: Compare Output Mode, non-PWM

• Bit 7 – FOC0 – Force Output Compare – This bit,

o When set to ‘1’ forces an immediate compare match and
affects the behavior of OC0 pin.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

o For en
be set to ‘0’.

• Bit 2:0 – CS02:0

OCR0 Register:

The Output Compare Register

Fig: OCR0 Register

The value to be compared (max 255) is stored in this

TIMSK Register:

The Timer/Counter Interrupt Mask

Fig: TIMSK Register

The Bit 1 – OCIE0 –
Enable enables the firing of interrupt whenever a compare match occurs.

TIFR Register:

The Timer/Counter Flag Register

For ensuring compatibility with future devices, this bit must
be set to ‘0’.

CS02:0 – Clock Select Bits

Output Compare Register– OCR0 Register is as follows:

The value to be compared (max 255) is stored in this register.

Timer/Counter Interrupt Mask – TIMSK Register is as follows:

– Timer/Counter0 Output Compare Match Interrupt
enables the firing of interrupt whenever a compare match occurs.

Timer/Counter Flag Register– TIFR is as follows:

45

suring compatibility with future devices, this bit must

OCR0 Register is as follows:

register.

TIMSK Register is as follows:

Timer/Counter0 Output Compare Match Interrupt
enables the firing of interrupt whenever a compare match occurs.

TIFR is as follows:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig: TIFR Register

The Bit 1 – OCF0 –
match occurs. It is cleared automatically whenever the corresponding ISR is
executed. Alternatively it is

AVR Timers – PWM Mode:

PWM is the technique used to generate analogue signals from a digital
device like a MCU. Almost all modern MCUs have dedicated hardware for PWM
signal generation.

PWM can be used to control servo
Analogue Conversion) etc.

PWM: Pulse Width Modulation:

It is basically a modulation technique, in which the width of the carrier pulse
is varied in accordance with the analog message signal.

In PWM, we generate square waves
cycle refers to the fraction of the time period of the wave for which the signal is in
high state (or simply ON state).

Fig: A PWM Waveform.

A PWM signal is a periodic rectangular pulse.

– Output Compare Flag 0 is set whenever a compare
match occurs. It is cleared automatically whenever the corresponding ISR is
executed. Alternatively it is cleared by writing ‘1’ to it.

PWM Mode:

PWM is the technique used to generate analogue signals from a digital
device like a MCU. Almost all modern MCUs have dedicated hardware for PWM

PWM can be used to control servo motors, perform DAC (Digital to

PWM: Pulse Width Modulation:

It is basically a modulation technique, in which the width of the carrier pulse
is varied in accordance with the analog message signal.

In PWM, we generate square waves whose duty cycle can be varied. Duty
cycle refers to the fraction of the time period of the wave for which the signal is in
high state (or simply ON state).

A PWM signal is a periodic rectangular pulse.

46

is set whenever a compare
match occurs. It is cleared automatically whenever the corresponding ISR is

PWM is the technique used to generate analogue signals from a digital
device like a MCU. Almost all modern MCUs have dedicated hardware for PWM

motors, perform DAC (Digital to

It is basically a modulation technique, in which the width of the carrier pulse

can be varied. Duty
cycle refers to the fraction of the time period of the wave for which the signal is in

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 47

Frequency = (1/T)

Duty Cycle = (Thigh/T)

The simplest way to generate a PWM signal is by comparing the
predetermined waveform with a fixed voltage level as shown below.

It has three compare output modes of operation:

• Inverted Mode - In this mode, if the waveform value is greater than the
compare level, then the output is set high, or else the output is low.

• Non-Inverted Mode - In this mode, the output is high whenever the
compare level is greater than the waveform level and low otherwise.

• Toggle Mode - In this mode, the output toggles whenever there is a
compare match. If the output is high, it becomes low, and vice-versa.

But it’s always not necessary that we have a fixed compare level. Those who
have had exposure in the field of analog/digital communication must have come
across cases where a saw tooth carrier wave is compared with a sinusoidal
message signal as shown below.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 48

Fig: PWM Modulation

 Duty Cycle:

The Duty Cycle of a PWM Waveform is given by

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 49

Fig: PWM with Different Duty cycles.

We are very well aware that the AVR provides us with an option of 8 and 16
bit timers. 8bit timers count from 0 to 255, then back to zero and so on. 16bit
timers count from 0 to 65535, then back to zero. Thus for a 8bit timer, MAX = 255
and for a 16bit timer, MAX = 65535.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 50

Fig: Fixed and Variable TOP in Timers

Note: TOP never exceeds MAX. TOP <= MAX.

Before going to PWM concepts in timers we have to aware about TOP,
Bottom and MAX .

The timer always counts from 0 to TOP, then overflows back to
zero. The1stfigure shown above, TOP = MAX .

We knew in CTC Mode, in which we can clear the timer whenever a
compare match occurs. Due to this, the value of TOP can be reduced as shown in
2nd figure. The thick line shows how the timer would have gone in normal mode.

Now, the CTC Mode can be extended to introduce variable TOP as shown in
3rd figure.

 PWM Modes of Operation:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 51

In general, there are three modes of operation of PWM Timers:

• Fast PWM
• Phase Correct PWM
• Frequency and Phase Correct PWM

Fast PWM:

In simple terms, this is Fast PWM! We have a saw tooth waveform, and we
compare it with a fixed voltage level (say A), and thus we get a PWM output as
shown (in A).

Now suppose we increase the compare voltage level (to, say B). In this case,
as we can see, the pulse width has reduced, and hence the duty cycle.

But, as you can see, both the pulses (A and B) end at the same time
irrespective of their starting time.

In this mode, since saw tooth waveform is used, the timer counter TCNTn (n
= 0,1,2) counts from BOTTOM to TOP and then it is simply allowed to overflow
(or cleared at a compare match) to BOTTOM.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 52

Phase Correct PWM:

Here instead of a saw tooth waveform, we have used a triangular waveform.
Even here, you can see how PWM is generated. We can see that upon increasing
the compare voltage level, the duty cycle reduces. But unlike Fast PWM, the phase
of the PWM is maintained. Thus it is called Phase Correct PWM.

By visual inspection, we can clearly see that the frequency of Fast PWM is
twice that of Phase Correct PWM.

Frequency and Phase Correct PWM:

The datasheets say that there is no difference between 'phase correct' and
'phase and frequency correct' modes if we are not changing the value of TOP on
the fly. Since TOP is dictating our repeating frequency then we aren't changing it
so these two modes are interchangeable and analogous.

So we will cover both of them with one discussion and will refer to them
both collectively as 'any phase correct' mode.

The major difference is that 'fast PWM mode' counted repeatedly from
BOTTOM to TOP to generate a saw tooth waveform whereas these 'any phase

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 53

correct modes' will count up from BOTTOM to TOP, and then from TOP to
BOTTOM so rather than a saw tooth they generate a triangular waveform:

Thus, for this, we need Frequency and Phase Correct PWM. Since in most
cases the value of TOP remains same, it doesn’t matter which one we are choosing
– Phase Correct or Frequency and Phase Correct PWM.

Making Choices:

Now that we are familiar with all the PWM concepts, it’s up to you to decide

• Which timer to choose?
• Which mode of operation to choose?
• Which compare output mode to choose?

Choosing Timer:

In AVR, PWM Mode is available in all timers. TIMER0 and TIMER2
provide 8bit accuracy whereas TIMER1 provides 16bit accuracy. In 8bit accuracy,
we have 256 individual steps, whereas in 16bit accuracy, we have 65536 steps.

Now suppose we want to control the speed of a DC motor. In this case,
having 65536 steps is totally useless. Thus we can use an 8bit timer for this.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 54

Even 8bit is too much, but there is no other choice. Obviously there isn’t
much difference in speed between 123/256th and 124/256th of full speed in case of
a motor.

But if we use servo motors, you have to use 16bit timer. If we need quite
high resolution in your application, go for 16bit timer.

Choosing Mode of Operation

If we want to control the speed of DC motors or brightness of LEDs, go for
any one of them. But if we are using it for telecommunication purposes, or for
signal sampling, fast PWM would be better. For general applications, phase correct
PWM would do.

Choosing Compare Output Modes

Out of the three modes,

• inverted,
• non-inverted
• toggle mode,

Non-inverted mode is the most reasonable. This is because upon increasing
the compare voltage, the duty cycle increases. However, you can choose any of
them.

Example: Let us take a problem statement. We need to generate a 50 Hz
PWM signal having 45% duty cycle.

Analysis:

Given that

Frequency = 50 Hz

In other words, the time period, T

T = T (on) + T (off) = 1/50 = 0.02 s = 20 ms

Also, given that

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 55

Duty Cycle = 45%

Thus, solving according to equation given above, we get

T (on) = 9 ms

T (off) = 11 ms

Now, this can be achieved in two ways:

• Use Timer in CTC Mode
• Use Timer in PWM Mode

Methodology – CTC Mode:

• Firstly, choose a suitable timer.
o For this application, we can choose any of the three timers

available in ATMEGA32.
• Choose a suitable prescaler.
• Then set up the timer and proceed as usual.

Note:The catch lies here is that you need to update the compare value of
OCRx register every time.

 Code:

#include <avr/io.h>
#include <avr/interrupt.h>
uint8_t count = 0; // global counter
voidtimerX_init() // initialize timer, interrupt and variable
{

 // set up timerX with suitable prescaler and CTC mode
 // initialize counter
 // initialize compare value
 // enable compare interrupt
 // enable global interrupts

}
ISR (TIMERx_COMPA_vect) // process the ISR that is fired
{

// do whatever you want to do here say, increment the global
counter

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 56

count++;
// check for the global counter
 // if count == odd, delay required = 11 ms
 // if count == even, delay required = 9 ms
 // thus, the value of the OCRx should be constantly updated
if (count % 2 == 0)
 OCRx = 9999; // calculate and substitute appropriate
value
else
 OCRx = 10999; // calculate and substitute appropriate
value

}
int main(void)
{

 DDRC |= (1 << 0);// initialize the output pin, say PC0
timerX_init(); // initialize timerX
while(1) // loop forever
 {
 // do nothing
 }

}
Methodology – PWM Mode:

The PWM Mode in AVR is hardware controlled. This means that
“everything”, is done by the AVR CPU. All we need to do is to initialize and start
the timer, and set the duty cycle.

We can choose any timer of AVR microcontroller, here we are using
TIMER0.

TCCR0 – Timer/Counter0 Control Register:

Here, we will learn how to set appropriate bits to run the timer in PWM
mode.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 57

Fig: TCCR0 Register

We will discuss only those bits which are of interest to us now.

• Bit 6, 3 – WGM01, 00 – Waveform Generation Mode - These bits
can be set to either “00″ or “01″ depending upon the type of PWM
you want to generate.

Mode WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter
Mode of
operation

TOP Update of
OCR0

TOV0
Flag Set-
on

0 0 0 Normal 0xFF Immediate MAX
1 0 1 PWM, Phase

correct
0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX
3 1 1 Fast PWM 0xFF TOP MAX
Fig: Waveform Generation Mode Bit Description

• Bit 5, 4 – COM01:0 – Compare Match Output Mode - These bits
are set in order to control the behavior of Output Compare pin (OC0)
in accordance with the WGM01:00 bits.

The following look up table to determine the operations of OC0 pin for Fast PWM
mode.

COM01 COM00 Description
0 0 Normal port operation, OC0 disconnected
0 1 Toggle OC0 on compare match
1 0 Clear OC0 on compare match
1 1 Set OC0 on compare match

Fig:Compare Output Mode, Fast PWM Mode

Now let’s have a look at the Fast PWM waveforms.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 58

Fig: Fast PWM

Now let me remind you that the AVR PWM is fully hardware controlled,
which means that even the timer compare operation is done by the AVR CPU. All
we need to do is to tell the CPU what to do once a match occurs.

The COM01:00 pins come into play here. We see that by setting it to “10″ or
“11″, the output pin OC0 is either set or cleared (in other words, it determines
whether the PWM is in inverted mode, or in non-inverted mode).

Similarly for Phase Correct PWM, the look up table and the waveforms go
like this.

COM01 COM00 Description
0 0 Normal port operation, OC0 disconnected
0 1 Reserved
1 0 Clear OC0 on compare match when up-

counting. Set OC0 on compare match when
down-counting.

1 1 Set OC0 on compare match when up-
counting. Clear OC0 on compare match
when down-counting.

Fig: Compare Output Mode, Phase Correct PWM Mode

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 59

Fig: Phase Correct PWM

Setting of COM01:00 to “10″ or “11″ determines the behavior of OC0 pin.
As shown in the waveforms, there are two instances – one during up-counting, and
other during down-counting. The behavior is clearly described in the look up table.

Please note that OC0 is an output pin. Thus, the effects of WGM and COM
won’t come into play unless the DDRx register is set properly.

• Bit 2:0 – CS02:0 – Clock Select Bits - These bits are used to select
prescaler.

OCR0 – Output Compare Register

We use this register to store the compare value. But when we use Timer0 in
PWM mode, the value stored in it acts as the duty cycle (obviously!). In the
problem statement, it’s given that the duty cycle is 45%, which means

OCR0 = 45% of 255 = 114.75 = 115

Edit: Note

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 60

The following code discusses how to create a PWM signal of a desired duty
cycle. If we want to change its frequency, you need to alter the TOP value, which
can be done using the ICRx register (which is not supported by 8-bit timers). For
16-bit Timer1, it can be varied using ICR1A.

Code:

#include <avr/io.h>
#include <util/delay.h>

voidpwm_init()
{

// initialize TCCR0 as per requirement, say as follows
 TCCR0 |=

(1<<WGM00)|(1<<COM01)|(1<<WGM01)|(1<<CS00);
// make sure to make OC0 pin (pin PB3 for atmega32) as output

pin
 DDRB |= (1<<PB3);

}
void main()
{

uint8_t duty;
duty = 115; // duty cycle = 45% of 255 = 114.75 = 115
 // initialize timer in PWM mode
pwm_init();
 // run forever
while(1)
 {
 OCR0 = duty;
 }

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

