www.sakshieducation.com

AVR Interrupts

By
D.BALAKRISHNA,
Research Assistant, IlIT-H

A single microcontroller can serve several deviddsere are two methods
by which devices receive service from the microoaldr: interrupts or polling.

Interrupts Vs Polling:

In the interrupt method, whenever any device needs.the microcoeti®ll
service, the device notifies it by sending an miet signal..Upon receiving an
interrupt signal, the microcontroller stops whatetteis.doing and serves the
device.

The program associated with the interrupt is catleelinterrupt service
routine (ISR) orinterrupt handler.

In polling, the microcontroller_continuously monitors the ssatf a given
device; when the status condition is' met, it penrthe service. After that, it
moves on to monitor the next'device until each isngerviced. Although polling
can monitor the status of“several devices and seach of them as certain
conditions are met, it is not an efficient useha microcontroller.

» The advantage/of interrupts is that the microcdietrocan serve many
devices (not-all at the same time, of course); edehice can get the
attention of the microcontroller based on the miyassigned to it.

* Theoalling method cannot assign priority becatisdecks all devices in a
round-robin fashion.

*..More importantly, in the interrupt method the moatroller can also
ignore (mask) a device request for service.

» This also is not possible with the polling method.

* The most important reason that the interrupt metbqureferable is that the
polling method wastes much of the microcontrolléirise by polling devices
that do not need service.

* So interrupts are used to avoid tying down the ozontroller.

www.sakshieducation.com

www.sakshieducation.com

Interrupt service routine:

For every interrupt, there must be an interrupwiser routine (ISR), or
interrupt handler. When an interrupt is invokede tmicrocontroller runs the
interrupt service routine. Generally, in most mpnacessors, for every interrupt
there is a fixed location in memory that holds #delress of its ISR. The group of
memory locations set aside to hold the addresséSRd is called thenterrupt
vector table, as shown in Table below

Interrupt ROM Location (Hex)
Reset 0000
External Interrupt request 0 0002
External Interrupt request 1 0004
External Interrupt request 2 0006
Time/Counter?2 Compare Match 0008
Time/Counter?2 Overflow 0004
Time/Counterl Capture Event 000C
Time/Counter] Compare Match A O00E
Time/Counter] Compare Maich B Q010
Time/Counter]l Overflow 0012
Time/CounterQ) Compare Match 0014
Time/Counter) Overflow 0016
SPI Transfer complete 0018
USART, Receive compléete 001 A
USART, Data Register Empty 001C
USART, Transmit Complete 001E
ADC Conversion complete 0020
EEPROM ready 0022
Analog Comparator 0024
Two-wire Serial Interface (12C) 0026
Store Program Memory Ready 0028

Fig: Interrupt vector.table for ATmega 32

Steps in executing an interrupt:

Upon-<aetivation of an interrupt, the microcontrolgoes through the following
steps:

1. It finishes the instruction it is currently exeqgiand saves the address of
the next instruction (program counter) on the stack
2. It jumps to a fixed location in memory called fiméerrupt vector table.
0 The interrupt vector table directs the microcoroto the address of

the interrupt service routine (ISR).

www.sakshieducation.com

www.sakshieducation.com

3. The microcontroller starts to execute the interiggatvice subroutine until it
reaches the last instruction of the subroutine,ctvhs RETI (return from
interrupt).

4. Upon executing the RETI Instruction, the microcohér returns to the
place where it was interrupted.

o First, it gets the program counter (PC) addressftbe stack by
popping the top bytes of the stack into the PC.
0 Then it starts to execute from that address.

Notice from Step 4 the critical role of the staEkr this reason, we must be careful
In manipulating the stack contents in the ISR. 8padly, in.the ISR, just as in
any CALL subroutine, the number pfishes and pops must be equal.

Sources of interrupts in the AVR

There are many sources of interrupts.in’ the AVRpyedding on which
peripheral is incorporated into the chip.

The following are some of the most widely used sesirof interrupts in the
AVR:

* There are at least twoeinterrupts set aside fan eathe timers, one for over
flow and another for compare match.

* Three interrupts<are set-aside for external harelwaerrupts.

o Pins PD2(PORTD.2), PD3 (PORTD.3), and PB2 (PORYRBt2 for
the external'hardware interrupts INTO, INT1, and 2Nrespectively

» Serial communication’s USART has three interruptse for receive and
two interrupts for transmit.

* The SPFlinterrupts.

» The ADC (analog-to-digital converter) interrupts.

Enabling and disabling an interrupt:

Upon reset, all interrupts are disabled (maskedhe interrupts must be
enabled (unmasked) by software in order for therasntroller to respond to
them.

www.sakshieducation.com

www.sakshieducation.com

The D7 bit of the SREG (Status Register) regist@esponsible for enablir
and disabling the interrupts globalThe I-bit makes the job of disang all the
interrupts easy. With a single instruction “CLI”|&ar Interrupt), we can make |
0 during the operation of a critical ta

Bit 7 [5 4 3 2 1 0
I T H 5 W] z C
Read/Write RW RSW RW RSW RW RSW RW B/W
Initial Value 0 0 0 0 0 0 0 0
I - Global Interrupt Enable T - Bit Copy Storage
C - carry flag Z - Zero Flag

M - Megative Flag V - Two's Complement Overflow Flag
S-8ign Bit, 5 =N EXOR WV H - Half Carry Flag

Fig: Status Register of ATme 32

» Bit D7 (1) of the SREG register must be set to HIGHllow the interrupt

to happen.
o This is done with the “SEI” (Set Interrupt) insttion.

e If 1 =1, each interrupt is enabled by setting t@sHl the interrupt enable (IE

flag bit for that interrupt
o There are some_l/Q registers holding the interematble bits
o It must be noted that if=0, no interrupt will be responded to, eve

the corresponding interrupt enable bit is hi

External Interfupts
Three external hardware interrupts are thel/ATmega AVR.

-, Pins PD2 (PORTD.2
« PD3 (PORTD.3)
- PB2 (PORTB.2

These are for the external hardware interrupts INMNOT1, and INT2,
respectively

www.sakshieducation.com

www.sakshieducation.com

PROGRAMMING EXTERNAL HARDWARE INTERRUPTS:

The number of external hardware interrupt inteigsupéries in different
AVRs. There are three external hardware interruptshe ATmega32INTO,
INT1, and INT2.

They are located on pins PD2, PD3, and PB2, respéct As shown in
Table below, the interrupt vector table locatiorzs $4, and $6 are set aside for
INTO, INT1, and LNTZ2, respectively.

FProgram
Vector Mo. | Address®® Source Interrupt Definition
1 soooth RESET External Pin, Power-on Reset, Brown-out
Reset. Watchdog Reset. and JTAG AVR
Reset
2 $002 INTD External Interrupt Requesi O
3 %004 INT1 External InterruptRequest 1
4 S006 INTZ2 External Interrupt Reguest 2
5 00 TIMERZ2 COMP TimernCounter2 Compare Match
L= H00A TIMERZ OVF Timer/ Counter2 Ohwvenflow
v S00C TIMERT CAPT Timer/Counterl Capture Event
8 S00E TIMER1T COMPA TimernCounterl. Compare Match A
9 010 TIMER1 COMPB Timer Counter1 Compare Match B
10 012 TIMER1 COVEF TimerfCounterl Owverflow
11 5014 TIMERO COMP Timer/Counterd Compare Match
12 016 TIMERO OVF Timer"Counterd Overflow
13 018 SPI, STC Serial Transfer Complete
14 HOTA USART, RXC USART, Rx Complete
15 $01C UsSART. UDRE UsSART Data Register Empty
16 SO01E UsSARE, TRC USART, Tx Complete
17 $020 ADC ADC Conwversion Complete
18 022 EERRDY EEPROM Ready
19 024 ANA, COMP Analog Comparator
20 026 ™I Two-wire Serial Interface
21 $028 SPM_RDY Store Program Memory Ready

Fig: Interrupt vector table.

The hardware-interrupts must be enabled before ¢haytake effect. These
interrupts are-controlled by the following register
- “GICR
- GIFR
- MCUCR
- MCUCSR

www.sakshieducation.com

www.sakshieducation.com

GICR:
Bit Mumber 7 6 5 4 3 2 1 0
GICR INT INTO INT2 — - — IVSEL IVCE
Read/\Write RW RW R/W R R R R/W R/
Initial Value 0 0] 0 o 0 0 0 0
INTO:

When this bit is ‘1’ and global interrupt bit in && is ‘1’'~(i.e..l bit) the
External Interrupt O is enabled. The ISC01 and ISCO0 of MCUCR regis
control the interrupt when to be activated (i.e.r@ng ede or falling edge o
level sensed).

The INTO is a low-level-triggered interrupt- by default, which mean
when a low signal is applied to pin PD2 (PORTD.®) controller will be
interrupted and jump to location $0002 in the'vetable to service the TS

INT1: When this bit is ‘1’ and glebal interrupt bit in && is ‘1’ (i.e. | bt)
the External Interrupt 1 is enabled. The ISC11 @10 of MCUCR registe
control the interrupt when to be activated (i.e.r@ing edge or falling edge
level sensed).

INT2: When this bitis‘1"and global interrupt bit in & is ‘1’ (i.e. | bit
the External Interrupt 2 is enabled. ISC2 bit of MCSR register control tr
interrupt when to beactivated (i.e. on rising edgéalling edge

There are 2'types of activation for the externatihvare interrupt:

* .Level triggere
».. Edge triggered
INTO & INT1 can be edge or level triggered, but INT2 can & edge
triggered only.

The MCUCR & MCUCSR registers decides the triggempgions of the extern:
hardware interrupts INTO, INT1, and IN

www.sakshieducation.com

www.sakshieducation.com

MCUCR:

This register decides the triggering options of éxternal hardware interrupts
INTO and INTL1.

Bit Murmber 7 & 5 4 3 2 1 0
MCUCR/| swm2 SE Sh1 Shi0 1SC1 1SC10 iscov | iscoo |

Fead M ite R AT Ry sy AN A = R

Initial Warlue a] ¥ a o el o 8] 4]

ISCO1 & ISCOO0 (Interrupt Sense Control Bits):

These bits define the level or edge on the extéNiED pin that activate the
interrupt as shown in table below.

ISCO01 | ISC00 Desegription
0 0 — L_J| Thelow level of INTO generates an interrupt request.
0 1 _‘l'_‘l‘_ ;r;):-‘ ;osg::cal change on INTO generates.an interrupt
1 0 —*_,— 'rl':qe; ;a;ltt-ng edge of INTO generates an interrupt
1 1 —|_.‘.F 'r!“aheug:;?g edge of INTO generates an interrupt
ISC11 &ISC10:

These bits define the‘level or edge on the extéNiBL pin that activate the
interrupt as shown in table below.

ISC11 | ISC10 Description

(0] (0] | | The low level of INT1 generates an interrupt request.

o 1 ﬁ’_‘l‘- Any logical change on INT1 generates an interrupt
request.

1 o 1r The falling edge of INT1 generates an interrupt
request.

1 1 __"‘_ The rising edge of INT1 generates an interrupt
request.

MCUSCR:

This register decides the triggering options of the@ernal hardware interrupt
INT2.

www.sakshieducation.com

www.sakshieducation.com

Bit T & 5 4 3 2 1 0
S e DTN et C A T I
| JTD 1sC2 - JTRF WDRF BORF | EXTRF | PORF I MCUCSR
RaadWrite R RAW R R R RAN RAw RW
Initial Valug 0 0 o Seoo Bit Description

ISC2: This bit controls the INT2 interrupt trigger condit.
* [ISC2 = 0: the interrupt is detected on falling ec
» |SC2 = 1: the interrupt is detected on rise €

ISC2 Description

0 Zt | The falling edge of INT2 generates an intérruptirequest.

The rising edge of INT2 generates an interrupt request.

GIFR:

When an external interrupt is in an e-triggered mode (falling edge, risii
edge, orchange level), upon triggering. an interrupt requibs related INTFX fla
becomes set.

Bit Mumber 7 & 5 4 3 > i o
crr [EERINCINGRINT | - | - | - [-]
Fraead ™ rita Ry Ry e T & (= (=] = R
Initial vValue 0 i) & o 0 V]] o

If the interrupt is active (the INTX bit is set atie -bit in SREG is one), th
AVR will jump to the ‘corresponding interrupt vectocation and the INTFx fla
will be cleared autematically, otherwise, the flemmains set. The flag can
cleared by writing a one to

In other words

* INTF1: When ‘1’ on this bit trigger INT1 Interrupt when TN bit of GICR
and | bit of SREG is on

* INTFO: When ‘1’ on this bitrigger INTO Interrupt when INTO bit of GIC
and | bit of SREG is on

* INTF2: When ‘1’ on this bit trigger INT2 Interrupt when T bit of GICR
and | bit of SREG is on

www.sakshieducation.com

www.sakshieducation.com

Interrupt Priority:

If two interrupts are activated at the same tirhe,itterrupt with the higher
priority is served first. The priority of each intept is related to the address of that
interrupt in the interrupt vector.

The interrupt that has a lower address, has a highepriority.

For example, the address of external interrupt B, ishile the address of
external interrupt 2 is 6; thus, external interrQ@tas a higher priority, and if both
of these interrupts are activated at the same taxeern al interrupt O is served
first.

Interrupt inside an interrupt:

What happens if the AVR is executing an ISR belngdgo an interrupt and
another interrupt is activated?

When the AVR begins to execute an ISR, it disabtesl-bit of the SREG
register, causing all the interrupts-to be disablatd no other interrupt occurs
while serving the current interrupt.

When the RETI instruction is execute d, the AVRI#esa the I-bit, causing
the other interrupts are to be served.

If you want another interrupt (with any priorityd tbe served while the
current interrupt is being served you can set tbi Wising the SEI instruction. But
do it with care:

For example, in a low-level-triggered external miet, enabling the I-bit
while.the pin is still active will cause the ISRHe reentered infinitely, causing the
stack to overflow with unpredictable consequences.

Interrupt latency:

The time from the moment an interrupt is activatedhe moment the CPU
starts to execute the task is called ititerrupt latency.This latency is 4 machine
cycle times.

www.sakshieducation.com

www.sakshieducation.com

During this time the PC register is pushed on taeksand the I-bit of the
SREG register clears, causing all the interruptsetalisabled. The duration of the
interrupt latency can be affected by the type dftruction that the CPU is
executing when the interrupt comes in, since the @Rishes the execution of the
current instruction before it serves the interrdptakes slightly longer in cases
where the instruction being executed lasts for @omore) machine cycles (e.g.,
MUL) compared to the instructions that last for onhe anstruction cycle (e.qg.,
ADD).

INTERRUPT PROGRAMMING IN C:

In C language there is no instruction to manage ititerrupts. So, in
WIinAVR the following have been added to manageinterrupts:

Interrupt include file: We should include the interrupt header file if we
want to use interrupts in our program. Use theotuiihg instruction:

#include <avn\ interrupt .h>

cli () and sei ():In Assembly, theCLI and SEI Instructions clear and set
the I-bit of the SREG register;. respectively. In WIinAVR, ttle () and sei ()
macros do the same tasks.

Defining ISR: To write-an ISR (interrupt service routine) foriaterrupt we
use the following structure:

| SR(interrupt vector name)

{
}

For theinterrupt vector namewe must use the ISR names in Table shown below.

/lour program

For example, the following TSR serves the Timerhpare match interrupt:

ISR (TIMERO_COMP_vect)

{
}

10
www.sakshieducation.com

www.sakshieducation.com

Interrupt

Vector name in WinAVR

External Interrupt request O

INTO_vect

External Interrupt request 1

INT1 vect

External Interrupt request 2

INT2_vect

Time/Counter2 Compare Match

TIMER2_COMP_vect

Time/Counter2 Overflow

TIMERZ2_OVF_vect

Time/Counterl Capture Event

TIMERL_CAPT vect

Time/Counterl Compare Match A

TIMERL_ COMPA_vect

Time/Counterl Compare Match B

TIMER1_ COMPB_ vect

Time/Counterl Overflow

TIMER1_OVF_vect

Time/Counter0 Compare Match

TIMERO_COMP vect

Time/CounterO Overflow

TIMERO. OVF .vect

SPI Transfer complete

SPI_STC vect

USART, Receive complete

USARTO_RX_vect

USART, Data Register Empty

USARTO_UDRE_vect

USART, Transmit Complete

USARTO_TX_vect

ADC Conversion complete ADC _vect

EEPROM ready EE_RDY_ vect
Analog Comparator ANALOG_COMP_vect
Two-wire Serial Interface TWI_vect

Store Program Memory Ready

SPM_RDY_vect

Fig: interrupt Vector Names for WinAVR

Example 1:

Assume that the INTO pin is connected to a switdt is normally high.
Write .a_program that toggles PORTC.3, whenever INi© goes low. Use the

external interrupt in level-triggered mode.

Solution:

#include <avr/io.h>
#include <avrl/irtterrupt.h>

int main ()

www.sakshieducation.com

Example 2:

www.sakshieducation.com

{
DDRC = 1<<3; //PC3 as an output
PORTD = 1<<2; //pull-up activated
GICR = (1<<INTO); //enable external interrupt O
sei (); /lenable interrupts
while (1); /lwait here

}

ISR (INTO_vect) /ISR for external interrupt O

{
PORTC "= (I<<3); /ltoggle PORTC.3

}

Rewrite Example 1, so that whenever INTO goes:libvioggles PORTC.3 only

once.

Solution:

#include <avr/io.h>
#include <avrl/irtterrupt.h>
int main ()

{

DDRC = 1<<3; //PC3 as an output
PORTD = 1<<2; //pull-up activated
MCUCR = 0x02; //make INTO falling edge triggered

GICR (1<<INTO); /lenable external interrupt O
sei (); /lenable interrupts
while (1); /lwait here
}
ISR (INTO_vect) //ISR for external interrupt O
{
PORTC "= (1<<3); /ltoggle PORTC.3
}

12
www.sakshieducation.com

www.sakshieducation.com

TIMER Interrupts
AVR Timers:

AVR timers have a lot of complex uses, but thesessial purpose is to measure
time.

They work in an asynchronous manner, i.e. they pamallel~to the
microcontroller's core code. This is possible ofigcause the timers have a
separate circuit for their function.

The smallest amount of time that a timer can measudetermined by the
frequency of the clock source which the microcdtgrauses. For example if the
microcontroller uses a 4MHz crystal as the cloclree, then the smallest time it
can measure is 1/4000000th of a second.

Timers as registers:

So basically, a timer is a register;.but.not a rarone. The value of this
register increases/decreases automatically.

* In AVR, timers are ofitwo.types:
o 8-bit and 16-bit timers.
* In an 8-bit timer,.the register used is 8-bit wide
* In 16-bit timerythe register width is of 16 bits.
e This means that the 8-bit timer is capable of cogn2*8=256 steps
from 0.t0 255

o o o o oo o o [
oo oo o o o [N
o o o o o o i o [

ERE PR CE C R T >

Counts till TOP 8 bit wide register Overflow

13
www.sakshieducation.com

www.sakshieducation.com
» 16 bit timer is capable of counting 2*16=65536 stigpm 0 to 65535.
Due to this featurdgjmers are also known as counters
Once they reach their MAX value it returns to ngial value of zero.

0 We say that the timer/counteverflows.
o Shown in above figure.

In ATMEGA32, we have three different kinds of tireer

e TIMERO - 8-hit timer
e TIMER1 — 16-bit timer
« TIMER2 - 8-bit timer

The timer is totally independent of the CPU. Thiguns parallel to the
CPU and there is no CPU's intervention.

Apart from normal operation, these three timersloarither operated in

« Normal mode
e CTC mode
« PWM mode

Timer Concepts:

Basic Concepts: We know:the following formula:

1

Frequency

Time Period =

Now let's assume that we have an external cry§téL of 4 MHz, Hence,
the CPU clock frequency is 4 MHz

As we discussed that the timer counts from O to TOP
For an 8-bit timer, it counts from O to 255

For a 16-bit timer it counts from 0 to 65535.
» After that, they overflow.

14
www.sakshieducation.com

www.sakshieducation.com

Let’s the timer’s value is zero now.

To go from O to 1, it takes one clock pulse. Tofgom 1 to 2, it takes
another clock pulse. To go from 2 to 3, it takes arore clock pulse. And so on.

For F_CPU = 4 MHz, time period T = 1/4M = 0.00025.nhus for every
transition (O to 1, 1 to 2, etc), it takesly 0.00025 ms

Let us assume we need a delay of 10 ms. This mayleey short'delay, but
for the microcontroller which has a resolution 00@25 ms, it's/quite a long
delay.

To get an idea dfhow longit takes, let’s calculate the timer count from the
following formula:

Required,Delay

Clock Tinié Period 1

Timer Count =

SubstituteRequired Delay = 10 mandClock Time Period = 0.00025 ms
and we will geTimer Count = 39999

Now, to achieve this, we*definitely cannot use8apit timer (as it has an
upper limit of 255, after which-it.overflows). Hemyowe use a 16-bit timer (which
Is capable of counting up t0-65535) to achievedeiay.

To achieve this, we-cannot use an 8-bit timeritdss an upper limit of
255). Hence, we use a 16-bit timer (which is capathlcounting up to 65535) to
achieve this delay.

The Prescaler;

Assuming F CPU = 4 MHz and a 16-bit timer (MAX =535), and
substituting in the above formula, we can get aimar delay of 16.384 ms.

Now what if we need a greater delay,
Example: For 20 ms.

Suppose if we decrease the F_CPU from 4 MHz tdMHz (i.e. 500
kHz), then the clock time period increases to 1k5600.002 md\Now if we
substituteRequired Delay = 20 mand Clock Time Period = 0.002 msve get

15
www.sakshieducation.com

www.sakshieducation.com

Timer Count = 9999. As we can see, this can easily be achieved usihg-lait
timer. At this frequency, a maximum delay of 132.0is can be achieved.

This technique of frequency division is callaebscaling. We do not reduce
the actual F_CPU. The actual F_CPU remains the ¢an#eMHz in this case). So
basically, wederivea frequency from it to run the timer. Thus, whilging so, we
divide the frequency and use it.There is a prowidim do so in AVR by setting
some bits which we will discuss later.

We cannot use prescaler fre@lyere is a trade-off between. resolution
and duration.The resolution has also increased from 0.000250ms002 ms. this
means each tick will take 0.002 ms that causesctexfuof accuracy.

Choosing Prescalers:

The AVR offers us the following prescalervalueshmose from: 8, 64, 256
and 1024. A prescaler of 8 means the effectivekdiemuency will be F_CPU/8.

Now substituting each of these ‘values into the abfbrmula, we get
different values of timer value.

Let us assume required delay. 184 ms and F_ CPUH&M
The results are summarized as below:

Reqguired Delay = 184 ms
F CPU =4 MHz

lerd Cci
8 s00 kHz 91999
64 62.5 kHz 11499
256 15.625 kHz 2874
1024 3906.25 Hz 717.75

Now out of these four prescalers, 8 cannot be wsedhe timer value
exceeds the limit of 65535. Also, since the timievags takes up integer values,
we cannot choose 1024 as the timer count is a dédigit. Hence, we see that
prescaler values of 64 and 256 are feasible. Bubbthese two, we choose 64 as
it provides us with greater resolution. We can &®256 if we need the timer for a
greater duration elsewhere.

16
www.sakshieducation.com

www.sakshieducation.com

Thus, we always choosprescalar which gives the counter value withir
the feasible limit (255 or 6553¢ and the counter value should always be &
integer.

Ground (no input) [} Timer/Counter 0 Input
System Clock (CK) — &

|

\

CK/8—————e
CK/64 ————e

Prescaler CK/256 .
CK/1024 —o
External Pin TO
D" Switch position controlled
D :
by counter select hits

Fig: TimerO PrescaladSelecto

AVR Timers — TIMERO :

Since timer is a peripheral, it can be activatedgéiging some bits |
some registers.

TCNTO Register:

TheTimer/Counter Register, shown in figure belo

Bit 7 (8] 5 4 3 2 1 1]

TCNTO[T:0] TCN1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Fig: TCNTO Register

The value of the counter is stored here and inestdecrease
automatically. Data can be both read/written from tegistel

17
www.sakshieducation.com

www.sakshieducation.com

Now we know where the counter value lies. But thigiste won't be
activated unless we activate the timer! Thus wealneeset the timer up
using Timer Counter Control Regis

TCCRO Register:

TheTimer/Counter Control Register,shown in figure belo

Bit 7 6 5 4 3 2] 0

FOCD | WOMOO | COMOL | COMOD |WGMOL | CS02 Cal] C a0 TCCRD
Read/Write W R/ R/ R/ R/W R/W R/W R/W
Initial Value 0 0 0 0 0 { W] 0

Fig: TCCRO Register

* Clock Select Bits (CS 02: 00)Usedtoset the timer up b
choosing proper prescaler. The possible combingtiane

shown below

CS02| CS01| CSOC(| Description

0 0 0 No-clock’source (Timer/Counter stopp

0 0 1 Clkyo/1 (No prescaling)

0 1 0 Clkyo/8 (From prescaler)

0 1 1 Clk,0/64 (From prescaler)

1 0 0 Clky,0/256 (From prescaler)

1 0 1 Clk,0/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock
falling edge.

1 1 1 External clock source on TO pin. Clock on ris
edge.

Fig: TCCRO PrecalerDefinition

o Example code:
* TCCRO |= (1 << CS00), /lnitializing the
counter inNoprecaling
» TCCRO |= (1 << CS02)|(1 << CS00)/ set up
timer with prescaler = 1024

18
www.sakshieducation.com

www.sakshieducation.com

 Bit 6,3 — WGMO01:00 — Wave Generation Mode- Just like in

TIMER1, we choose the type of wave mode from hese a
follows

Mode | WGMO1 | WGMOO | Timer/Counter TOP | Update of| . TOVO
(CTCO) | (PWMO) | Mode of OCRO Flag Set-

operation on

0 0 0 Normal OxFF| ImmediateMAX

1 0 1 PWM, PhasgOxFF | TOP BOTTOM
correct

2 1 0 CTC OCRO| Immediatel MAX

3 1 1 Fast PWM OxFF TOP MAX

Fig: Wave Generation Mode Bit Description

* Bit5:4 — COMO01:00 — Compare Match Output Mode —

o Controls the behavior of the OCO (PB3) pin depegdin
upon the WGM mode —

= non-PWM,
= Phase Correct PWM mode and
= . Fast PWM mode

o0 The-selection options of non-PWM mode are as falow

COMO1 [\COMOO | Description

0 0 Normal port operation, OCO disconnected
0 1 Toggle OCO on compare match

1 0 Clear OCO on compare match

1 1 Set OCO on compare match

Fig: Compare Output Mode, non-PWM

* Bit 7 - FOCO - Force Output Compare —
0 Whensetto 1’

» Forces an immediate compare match and affects
the behavior of OCO pin.
o0 When clear to ‘0’

» To ensure compatibility with future devices, this
bit must be set to ‘0’,

19
www.sakshieducation.com

www.sakshieducation.com

OCRO Register:

The Output Compare Registe OCRO Register is shown in figure

below.
Bit 7 6 5 4 3 2 1 0
OCRO[7:0] OCRO
Read/Write RW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Fig: OCRO Register
The value to be compared (max 255) is stored sregister.
TIMSK Register:

The Timer/Counter.Interrupt Mask Register, shown in figure

below:
Bit 7 6 5 4 3 2 1 0
I OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIEO TOIEO I TIMSK
Read/Write RN RW R/W R/W R R/MW RW R/W
Initial Value 0 0 0 0 0 0 0 0

Fig: TIMSK Register
It is a common register for all the three timers.
Bits (1:0):

« Correspond to TIMERO
« BitO:

0 Setting the bifOIEO to '1’ enables the TIMERO overflow interrupt.
e Bit1:

20
www.sakshieducation.com

www.sakshieducation.com

o0 OCIEO - Timer/CounterO Output Compare Match Interru pt
Enable

» Enables the firing of interrupt whenever a compagagch occurs.
Bits (5:2):

« Correspond to TIMERL1.
* Bit 2 — TOIE1 — Timer/Counterl Overflow Interrupt
Enable bit
o Enables the overflow interrupt of TIMERL1.
» Other bits are related to CTC mode
o Bit 4:3 —OCIE1A: B — Timer/Counterl, Output
Compare A/B Match Interrupt Enable bits.
= Enabling it ensures.that an interrupt is fired
whenever a match occurs.
» Since there are two CTC channels, we have two
different bits OCIE1A and OCIE1B for them.

o Bit 5- TICIEL Timer 1 Input Capture Interrupt

Enable
» ~TICIE1= O Disables Timerl input capture
interrupt
= TICIE1= | Enables Timer 1 input capture
interrupt

Bits.(7:6):

» “Correspond to TIMERZ2

» Setting the bifTOIE2 to '1’ enables the TIMERO overflow
interrupt.

e OCIEO — Timer/Counter0 Output Compare Match
Interrupt Enable

o Enables the firing of interrupt whenever a compare
match occurs.

TIFR Register:

21
www.sakshieducation.com

www.sakshieducation.com

The Timer/Counter Interrupt Flag Register, shown in figure

below.
Bit 7 6 5 4 3 2 1 0
OCF2 TOV2 ICF1 OCF1A | OCF1B TOV1 OCF0 TOVO TIFR
Read/Write RW RIW R/W R/W R/IW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Fig: TIFR Register
This is also a register shared by all the timers:
Bits (1:0):

* Correspond to TIMERO

 BitO:

o TOVO(Timer/Counterl Overflow Flag) bitis set (one) whenever TIMERO
overflows.

» This bit is reset (zero) whenever the Interruptvider Routine (ISR) is
executed.

» |f there is no ISR to execute, we can clear it nadiguby writing one to it.

e Bit1:

0 OCFO — Output Compare Flag O

» Sets wheneveracompare match occurs.

» |tis cleared-automatically whenever the correspuntSR is executed.
Alternatively.it'is cleared by writing ‘1’ to it.

Bits (5:2)

« Correspond to TIMER1.

o Bit 2 — TOV1 — Timer/Counterl Overflow Flag bit is set to 1 whenever
the timer overflows

o This bit is reset (zero) whenever the Interruptviger Routine (ISR) is
executed.

o If there is no ISR to execute, we can clear it nadiguy writing one to it.

22
www.sakshieducation.com

www.sakshieducation.com

* Bit 4:3 — OCF1A: B — Timer/Counterl, Output Compare A/B Mach
Flag Bit.

o This bit is set (one) by the AVR whenever a matctuos

» TCNT1 becomes equal to OCR1A (or OCR1B).

» |t is cleared automatically whenever the correspundnterrupt Service
Routine (ISR) is executed.

= Alternatively, it can be cleared by writing’'tb it!

Bits (7:6):

» Correspond to TIMER2
» TOV2 bit is set (one) whenever TIMERZ2 overflows:.
o This bit is reset (zero) whenever the Interruptviger Routine (ISR) is

executed.
o If there is no ISR to execute, we can clear it nadiguy writing one to it.

Example: (Without Using interrupts)

To flash an LED every 8 ms and we have an XTAL 6fMHz. We can use a
prescaler of 1024. Now refer to_the descriptionslotk select bits as shown in the
TCCRO register.

Code:

#include <awrfio.h>
void timer0 _init()

{
/["'Set up timer with prescaler = 1024
TCCRO |= (1 << CS02)|(1 << CS00);
// initialize counter
TCNTO = 0;

}

int main(void)

{

/[connect led to pin PCO
DDRC |= (1 << 0);
/[initialize timer

23
www.sakshieducation.com

www.sakshieducation.com

timer0_init();

/Il loop forever

while(1)

{
/I check if the timer count reaches 124
if (TCNTO >=124)

{

PORTC "= (1 << 0); //toggles the led
TCNTO =0; /] reset counter

}

}

Example: (Using Interrupts)
To flash the LED every 50 ms. With CPU frequencyMi8z,

Even a maximum delay of 16.384 ms can be achievadgua 1024
prescaler.The concept here is that the hardwarergiss an interrupt every time
the timer overflows. Since the required.delay sater than the maximum possible
delay, obviously the timer will overflow. And wherex the timer overflows, an
interrupt is fired. Now the question ®w many times should the interrupt be
fired?

For this, let's do some calculation. Let's choosgr@scaler, say 256. Thus,
as per the calculations, it should take 4.096 mgHe timer to overflow. Now as
soon as the timer overflows, an interrupt is fiegdl an Interrupt Service Routine
(ISR) is executed. Now,

50 ms +=4.096 ms = 12.207

Thus, in simple terms, by the time the timer hasrftewn 12 times, 49.152
ms would have passed. After that, when the timedetgoes 13th iteration, it
would achieve a delay of 50 ms. Thus, in the 1f#tation, we need a delay of 50
—49.152 = 0.848 ms. At a frequency of 62.5 kHzgpaler = 256), each tick takes
0.016 ms. Thus to achieve a delay of 0.848 msptlavrequire 53 ticks. Thus, in
the 13th iteration, we only allow the timer to coup to 53, and then reset it. All
this can be achieved in the ISR as follows:

Code:

#include <avr/io.h>

24
www.sakshieducation.com

www.sakshieducation.com

#include <avr/interrupt.h>
// global variable to count the number of overflows
volatile uint8_t tot_overflow;
// initialize timer, interrupt and variable
void timer0_init()

{
TCCRO |= (1 << CS02)] set up timer with prescaler =.256
TCNTO = 0;// initialize counter
TIMSK |= (1 << TOIEOQ);// enable overflow interrupt
sei()// enable global interrupts
tot_overflow = 0y/ initialize overflow counter variable

}

/I TIMERO overflow interrupt service routine éall@éghenever TCNTO
overflows

ISR(TIMERO_OVF_vect)

{
Il keep a track of number ofseverilows
tot_overflow++;

}

int main(void)

{

Il connect led ta,pin/,CO
DDRC |= (1.<<0);
/] initializg"tinver
timerQ _(init();
I lg@pNorever
while(1)
{
I/ check if no. of overflows = 12
if (tot_overflow>= 12) // NOTE: >="is used

/I check if the timer count reaches 53
if (TCNTO >=53)

{
PORTC "= (1 << 0); //toggles the led
TCNTO =0; /I reset counter
tot_overflow = 0; // reset overflow counter

}

}

25
www.sakshieducation.com

www.sakshieducation.com

AVR Timers — TIMER1:

In addition to the usual timer/counter, Timer 1 te@ms one 16 bit input
capture register and two 16-bit outputs comparesres.

The input capture register is used for measuringsep widths or
capturingtimes. The output compare registers agd @ producing frequencies or
pulses from thetimer/counter to an output pin @rthcrocontroller.

TCNTL1 Register:

The Timer/Counterl Register, shown 'in figure below.

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNT1L
Read/Write RW RW R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Fig: TCNT1 Register.

It is 16 bits wide since the. TIMERL1 is a 16-bitistgr. TCNT1H represents
the HIGH byte whereaSCNT1L represents the LOW byte. The timer/counter
value is stored in these bytes.

Timer/counter control register 1 (TCCR1): the ATMegal6 timer /control
register for _Timer 1 is actually composed oftwo isegs, TCCR1A and
TCCR1B.

TCCR1A controls the compare modes and the pulse widthutatdn
modes of Timerl.

TCCRI1B controls the prescaler and input multiplexer fandr 1, as well
asthe input capture modes.

TCCR1A Regqister:
TheTimer/Counterl Control RegisterA,shown in figure below.

26
www.sakshieducation.com

www.sakshieducation.com

Bit i & 5 4 3 2 1 0
COM1BO | FOC1A | FOCIB WGM10 | TCCR1A
ReadiWrite RW RW RIW RW W W RW RW

Fig: TCCR1A Register

» The behavior changes depending upon the followindes:
0o Non-PWM mode (normal / CTC mode)
o Fast PWM mode
o Phase Correct / Phase & Frequency Correct PWM mode
* Bit 7.6 —- COM1A1:0 andBit 5:4 — COM1B1:0
o0 Compare Output Mode for Compare Unit A/B.
o0 These bits control the behavior.of the Output Campg®C)

pins.

COM1A1l/ | COM1A0/ | Description

COMi1B1 |COM1BO

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on compare match.

1 0 Clear OC1A/OC1B on compare match (Set outpyt to
low level)

1 1 Set OC1A/OC1B on compare match (Set output to
high level)

Table: Compare Output Mode, non-PWM

* Bit 3:2 — FOC1A: B — Force Output Compare for Compae Unit
A/B.

0 These bits ararite onlybits.

o They are active only in non-PWM mode.

o For ensuring compatibility with future devices, gbebits must
be set to zero (which thejreadyare by default).

27
www.sakshieducation.com

www.sakshieducation.com

0 Setting them to ‘1’ will result in an immediate é&d compare
match and the effect will be reflected in the OCQE/AB pins.

o The thing to be noted is that FOC1A/FOC1B will not
generate any interrupt, nor will it clear the timer in CTC
mode.

TCCR1B Register:

TheTimer/Counterl Control Register Bshown in figure-below.

bit 1 b 5 4 3 2 | 0

(O] o |- o T Voun o7 [an | G] e
RIW R RW RW RW_~ RW

ReadWnte RW

RIW
Intial Value 0 0 0 0 0 I 0 0

Fig: TCCR1B Register

The bit 2:0 — CS12:10 are theClock Select Bits of TIMER1. Their
selection is as follows.

CS12| CS11| CS10 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 Clko/1 (No prescaling)

0 1 0 Clko/8 (From prescaler)

0 1 1 Clko/64 (From prescaler)

1 0 0 Clko/256 (From prescaler)

1 0 1 Clko/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock oririgl
edge.

-\ 1 1 External clock source on T1 pin. Clock omngs
edge.

Fig: TCCR1B PrescalerDefinitions
Bits 7:6 in TCCR1B:

* |ICNC1(Input Capture Noise Canceller)(1 = enabled)

28
www.sakshieducation.com

www.sakshieducation.com

edge)
Bits 1.0 in TCCR1IAWGM11 & WGM11) and

Bits 4:3 in TCCR1B(WGM13&WGM12) are Wave Generation Mode

Bits which are used to select mode shown in figure below

ICES1(Input Capture Edge Select)(1 = rising edse, 0 = falling

Mode | WGM1 | WGM1 | WGM11 | WGM10 | Timer/Counter Mode of operation Top Update . of| TOV1

3 2 (PWM1 | (PWM10) OCR1x Flag Se

(CTCy) | 1) on

0 0 0 0 0 Normal OXFFFF |. Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF TOP BOI
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01lFF TOP BOI
3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF TOP BOWI
4 0 1 0 0 CTC OCR1A | Immediatg MAX
5 0 1 0 1 Fast PWM, 8-bit Ox00FF | TOP TOP
6 0 1 1 0 Fast PWM, 9-bit Ox01FF | TOP TOP
7 0 1 1 1 Fast PWM, 10-bit Ox03FF | TOP TOP
8 1 0 0 0 PWM, Phase & Frequency corrgct ICR1 BOMTOBOTTOM
9 1 0 0 1 PWM, Phase & Frequency correct OCR1A BONMT| BOTTOM|
10 1 0 1 0 PWM, Phase Carrect ICR1 TOP BOTT
11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTT
12 1 1 0 0 CTC ICR1 Immediate MAX
13 1 1 0 1 Reserved - - -
14 1 1 1 0 Fast PWM ICR1 TOP TOP
15 1 1 1 1 Fast PWM OCR1A | TOP TOP

Fig:Wave Generation Mode Bit:Description

In pin configuration of ATMEGA16/32, we can see fhias PB3, PD4, PD5
and PD7. Their special-functions are mentionedhim brackets (OCO, OC1A,
OC1B and OC2)..These are the Output Compare pifldMERO, TIMER1 and

TIMER2 respectively shown in figure below.

www.sakshieducation.com

29

M
DM

www.sakshieducation.com

(o =] o

(=AU T O PBO
(T} FBE1 [
LT 2&IRNDT) FHEE [

Il'D-E-l:.'-'-_'I'-.I'| F-"ESII_:
i I PiEd

(OSE) PBS [
(=0 PSS T
(SCK) PET
RESET [

Wil]

=l [

SATALE [T
WTAELT
(RXD)Y PO
D) =1
(IHTO) FLE [
L e
(T 1E) PDaE
(LT85 FLS |
iz = 1 G —

-_t-:,:,‘:-u: o B G e bR =

ol ok ok ol wl ol

b
<
=1

GOl ~mmESDN-=

Rl wh mi

Fig: ATmega 16/ 32 Pin description
OCRI1A and OCR1B Registers.

eyl AT
i, f [A=
Pagr A
PaE (A3
Pag [ADRT4E)
Fubh. 5 [£t 5al]
e [ATEE |
FaT [AINCRy
SLECE

(£ N

AhR

P SWTOSECR)
FLOto FimixsesT1h
B= (e
PCa (TG
PC3 (TRASS
P2 (TCHD)
=T (=)

S
=_=1]

We must tell the AVR toreset the timer as sooritsagalue reachesuch
and such valueSo, the question is, how do we seich and such valuesihe
Output Compare Register 1A— OCR1A and th®©utput Compare Register 1B

— OCRI1B are utilized for this purpose.

Bl T B 5 d 3 2 1 i}
l DCR1A[15:8] DCR1AH
DCR1ALT:A) CR1AL
Readig RLAS R Rt A - R RN R R
[y Wy] i)] o Q b il i) [+]
Fig: OCR1A Register
30

www.sakshieducation.com

FoaEmif e

Irefia! Vakia

www.sakshieducation.com

7 & 5 | 3 2 1 o
1 OCR1B[15:8] | ccmriem
s e -
1 CCR1B{T:0] | ccrie
Wy e N Y ind LR ey Nt
R R R RW R R RN R

Q G u} H =l o

(=]
(=]

Fig: OCR1B Register

Since the compare value will be a 16-bit valuel@ween 0 and 65535),

OCR1A and OCR1B are 16-bit registers. In ATMEGAIG/there are.two CTC
channels —

A and B. We can use any one of thenottr het's use OCR1A.

Example:

Example:
To flash an LED every 2 seconds, i.e. at a frequeh®©.5 Hz. We have an XTAL
of 16 MHz.

Code:

OCRI1A = 24999; // timer compare value

#include <avr/io.h>
#include <avr/interrupt.h>

/I global variabletosgou1t the number of overflows
volatile uint8_t tot overflow;
/I initialize timeksifterrupt and variable
void timerl init()
{
[/'set up timer with prescaler = 8
TCCRI1B |= (1 << CS11);
// initialize counter
TCNT1 =0;
I/l enable overflow interrupt
TIMSK |= (1 << TOIEL);
sei()// enable global interrupts
/l initialize overflow counter variable
tot_overflow = 0;
}
/l TIMERL1 overflow interrupt service routine calladhenever TCNT1
overflows
ISR(TIMER1_OVF_vect)

31
www.sakshieducation.com

www.sakshieducation.com

{
I/ keep a track of number of overflows
tot_overflow++;
/Il check for number of overflows here itself
I/ 61 overflows = 2 seconds delay (approx.)
if (tot_overflow >= 61)// NOTE: '>=" used instead of '=='
{
PORTC "= (1 << 0);// toggles the led
/I no timer reset required here as the timggJ8tresery
time it overflows
tot_overflow = 0; // reset overflow counter
}
}
int main(void)
{
// connect led to pin PCO
DDRC |= (1 << 0);
timerl_init();// initialize timer
while(1)/ loop forever
// do nothing
/I compauson is done in the ISR itself
}
}

AVR Timers — TIMERZ2:

TIMER2 is an 8-bit.timer (like TIMERO); most of thregisters are similar to
that of TIMERO registers. Apart from that, TIMER#ears a special feature which
other timers don’t Asynchronous Operation

TCNT2*Register:

In theTimer/Counter registershown in figure below.

Bit 7 6 5 4 3 2 1 0
TCNT2[7:0] TCNT2
Read/Write RW RIW RIW R/W R/W R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

Fig: TCNT2 Register

32
www.sakshieducation.com

www.sakshieducation.com

TCCR2 Register:

TheTimer/Counter Control Registeris shown in figure below.

Bit 7 4] 5 4 3 2 1 0

FOC2 WGM20 | COmM21 COomz20 | wGMz1 Cs22 cs21 Cs20 TCCR2
Read/Write W RW RIW RW RIW R/W RW R/wW
Initial Value 0] 0 0 0 0 o 0

Fig: TCCR2 Register

In TIMERO/1 the prescalers available are 8, 64, 268 1024, whereas in
TIMER2, we have 8, 32, 64, 128, 256 and 1024.

The bit 2:0 — CS22:20 are theClock Select Bits of TIMERZ2. Their
selection is as follows.

CS22| CS21| CS20| Description

No clock source (Timer/Counter stopped)
Clk,</1 (Noprescaling)

Cll,</8 (From-prescaler)

Clk»</32 (Erom prescaler)

Clk,</64 (From prescaler)

Clk,</128 (From prescaler)

Clk-,</256 (From prescaler)

Clk»</1024 (From prescaler)

Fig: Clock Select Bit Description

R PR POOOO

R OO OO

R P OOIRFL OO

Example:
To flash an LED every 50 ms. We have an XTAL ofM8z.
Code:

#include <avr/io.h>

#include <avr/interrupt.h>

// global variable to count the number of overflows
volatile uint8_t tot_overflow;

// initialize timer, interrupt and variable

void timer2_init()

{

33
www.sakshieducation.com

www.sakshieducation.com

I/ set up timer with prescaler = 256
TCCR2 |= (1 << CS22)|(1 << CS21);
// initialize counter
TCNT2 =0;
TIMSK |= (1 << TOIE2); // enable overflow interrupt
sei()// enable global interrupts
// initialize overflow counter variable
tot_overflow = 0;

}
/I TIMERO overflow interrupt service routine calleshen&ve® TCNTO
overflows
ISR(TIMER2_OVF_vect)
{
tot_overflow++;// keep a track of number of overflows
}
int main(void)
{
DDRC |= (1 << 0);// connectded to pin PCO
timer2_init(); // initialize timer
while(1) // loop forever
{
Il check iTo&of overflows = 12
if (tot overflow >= 12)// NOTE: '>="Is used
{
if (TCNT2 >=53) // check if the timer count reaches 53
{
PORTC "= (1 << 0); // toggles the led
TCNT2 = 0; I/ reset counter
tot_overflow = 0; // reset overflow
counter
}
}
}
}

AVR Timers — CTC Mode:

It is a special mode of operatiorClear Timer on Compare (CTC) Mode

34
www.sakshieducation.com

www.sakshieducation.com

We had two timer values with usSet Point(SP) andProcess ValugPV).

In everytime, we used to compare the process waitlethe set point. Once
the process value becomes equal (or exceeds) thmise, the process value is
reset.

Example:
max = 39999; // max timer value set <--- set point
// some code here
...
...
Il TCNTL1 <--- process value
if (TCNT1 >=max) // process value eompared with the set point

{

TCNT1=0; // prog€sswalue is reset

}
/..

Since TIMERL is.a.16-bit timer, it can count upaanaximum of 65535.
Here, what we desire.is that the timer (processejathould reset as soon as its
value becomes equal to (or greater than) the set (Maximum Value) of 39999.

So basically, the CTC Mode implements the samegthbut unlike the
above example, it implements it in hardware. Whiedans that we no longer need
to worry about comparing the process value withsitepoint every time! This will
not-only avoid unnecessary wastage of cycles, Isotensure greater accuracy (i.e.
no missed compares, no double increment, etc).

Hence, this comparison takes place in the hardvtsed, inside the AVR
CPU! Once the process value becomes equal to the setrpoia flag in the
status register is set and the timer is resetutomatically! Thus goes the name —

35
www.sakshieducation.com

www.sakshieducation.com

CTC — Clear Timer on Compare! Thus, all we need to do is to take care of the
flag, which is much faster to execute.

CTC mode - Timer 1:
Example:

Let’s take up a problem to understand this conddfjetneed to flash.an LED
every 100 ms. we have a crystal of XTAL 16 MHz.

Required Delay

Timer Count = q
Her HOUE = Clock Time Period

Now, givenXTAL = 16 MHz, with a prescaler 064, the frequency of the
clock pulse reduces 250 kHz With a Required-Delay 200 ms,we get the
Timer Count to be equal 4999 Up until new, we would have let the value of
the timer increment, and check its value-everyatten, whether it's equal to
24999 or not, and then reset the tinfdow, the same will be done in hardware!
We won't check its value everytime-in software! Wil simply check whether
the flag bit is set or not, that's all.

Using CTC Mode
TCCR1A and TCCR1B Registers:

We are already aware of ti@ock Select Bits — CS12:10n TCCR1B.
Hence, right-now, we are concerned with iWave Generation Mode Bits —
WGM13:10. These bits are spread across both the TCCR1teegiGA and B).
Thus we need to be a bit careful while using th&heir selection is as follows:

Mode | WGM1 | WGM1 | WGM11 | WGM10 | Timer/Counter Mode of operation | Top Update of| TOV1

3 2 (PWM1 | (PWM1 OCR1x Flag Se

(CTC1) | 1) 0) on

0 0 0 0 0 Normal OXFFFF Immediate| MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit OxO00FF TOP BOW
2 0 0 1 0 PWM, Phase Correct, 9-bit OxO01FF TOP BOW
3 0 0 1 1 PWM, Phase Correct, 10-bit O0x03FF TOP BOWI
4 0 1 0 0 CTC OCR1A | Immediate | MAX
5 0 1 0 1 Fast PWM, 8-bit Ox00FF TOP TOP

36
www.sakshieducation.com

www.sakshieducation.com

6 0 1 1 0 Fast PWM, 9-bit Ox01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF | TOP TOP

8 1 0 0 0 PWM, Phase & FrequenciCR1 BOTTOM | BOTTOM
correct

9 1 0 0 1 PWM, Phase & FrequencCR1A | BOTTOM | BOTTOM
correct

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTT

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTT

12 1 1 0 0 CTC ICR1 Immediate | MAX

13 1 1 0 1 Reserved - - -

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A | TOP TOP

bM
DM

Fig: Wave Generation Mode Bit Description

We can see that there are two possible selectmnSTC Mode. Practically,
both are the same, except the fact that we sterértier compare value in different
registers. Right now, let's move on with the ‘firgption (0100). Thus, the
initialization of TCCR1A and TCCR1B is as follows.

TCCRI1A |=0; // not required since WGM11.:0, both are zero (0)

TCCRI1B |= (1 << WGM12)|(1 <<.CS11)|(1 << CS10);// Mode = CTC,
Prescaler = 64

OCR1A and OCR1B Registers:

We must tell the AVR. to reset the timer as sooritsasalue reachesuch
and such valueSo, the question is, how do we seich and such valueskhe
Output Compare Register 1A— OCR1A and th®©utput Compare Register 1B
— OCRA1B are utilized for this purpose.

Since the compare value will be a 16-bit valuekd@ween 0 and 65535),
OCR1A and-OCR1B are 16-bit registers. In ATMEGAIG/ghere are two CTC
channels = A and B. We can use any one of thenothr het's use OCR1A.

Example:
OCRI1A = 24999; // timer compare value
TIFR Register:

37
www.sakshieducation.com

www.sakshieducation.com

Bil 7 § 5 4 3 2 : o
[TGCF2 [Tows | icF1 | OCFiA | OCFIB | T0vi | GGRG | Tova | TR

ReadAints M MY M R R RN Ry FIWY

Iniial Value 0 0 0 g a 0 D

We are interested iBit 4:3 — OCF1A: B — Timer/Counterl, Output
Compare A/B Match Flag Bit. This bit is set (one) bthe AVR whenever
match occurs i.e. TCNT1 becomes equal to OCR1AQGR1B). It is cleare
automatically whenever the corresponding Interr@gtrvice Routine (ISR) |
executed. Alternatively, it can be cleared by wqgtil’ to it!

Code:

#include <avr/io h>
// initialize timer, interrupt and variak
void timerl_init()
{
I/ set up timer with prescalers.64and CTC n
TCCRI1B |= (1 << WGM12)|(1 << CS11)|(1 << CSL(
/I initialize counte
TCNT1 =0;
[initialize comparayalt
OCRI1A = 24999

}

int main(void)

{

/[dgnnect led to pin P(

DDRC |=(1<<0)

/[Tnitialize timel

timerl_init();

I/ loop forever

while(1)
{

/I check whether the flag bit is set if set, it me#hat there has beel
compare match and the timer has bcleared use this opportunity to tog:
the led

if (TIFR & (1 << OCF1A)) // NOTE: '>="used instead of *

{

38
www.sakshieducation.com

www.sakshieducation.com

PORTC "= (1 << 0);// toggles the led
}

/[wait! we are not done Yy«
I/ clear the flag bit manuallynce there is no ISR to exec
/I clear it by writing '1' to it (as per the datash
TIFR |= (1 << OCF1A);
/[yeah, now we are dor

}
}

Using Interrupts with CTC Mode:

In the previous methodology, we simply used the . Q4&@le of operatior
We used tocheckevery time for the flag bit (OCF1A). Now let's shithis
responsibility to the AVR itself! Yes, now wdo not.need to chedkr the flag bit
at all' The AVR will compre TCNT1 with OCR1A. Whenever a match occur
sets the flag bit OCF1A, aralsofires an interrupt! We just need to attend to
interrupt, that's it.

There are three kinds of interruptsin A-

* Overflow,
 Compare
* Capture

We have already discussed overflowinterrupt.

TIMSK Register:

Bir "

T =] 5 =] = 1 o
[55iea | Toes | vices | GoiEiA | DCIEIE | ToiEl | DEiEs | TeeEs]| Teask
LA T

Ras s RSy ~ R LS P A A R [=T5"T]

The Bit 4:3 —OCIE1A: B — Timer/Counterl, Output Compare A/B
Match Interrupt Enable bits are of our interest here. Enabling it enstina$ an
interrupt is fired whenever a match occurs. Siterd are two CTC channels,
have two different bits OCIE1A and OCIE1B for th

39
www.sakshieducation.com

www.sakshieducation.com

Whenever a match occurs (TCNT1 becomes equal R1IBG 24999), an
interrupt is fired (as OCIE1A is set) and the OCFl#g is set. Now since an
interrupt is fired, we need an Interrupt ServiceutRee (ISR) to attend to the
interrupt. Executing the ISR clears the OCF1A tétgautomatically and the timer
value (TCNT1) is reset.

Code:

#include <avr/io.h>

#include <avr/interrupt.h>
/[initialize timer, interrupt and variable
void timerl_init()

{
/I set up timer with prescaler = 64 andCY{C 'mode
TCCRI1B |= (1 << WGM12)|(1 <<'CS11)|(1 << CS10);
TCNT1 = 0;// initialize counter
OCR1A = 24999/ initialize compare value
TIMSK |= (1 << OCIE1A);// enable compare interrupt
sei()// enable global intefrupis
}
/I this ISR is fired wheneyerfa match occurs henaggle led here
itself..
ISR (TIMER1_COMPA vect)
{
PORTC ?=«(1 << 0)y/ toggle led here
}
int main(void)
{
DDRC |= (1 << 0){/ connect led to pin PCO
timerl1_init(); // initialize timer
while(1) //loop forever
{
/[do nothing
/l whenever a match occurs, ISR is fired
// toggle the led in the ISR itself
// no need to keep track of any flag bits here
}
}

40
www.sakshieducation.com

www.sakshieducation.com

Using Hardware CTC Mode:

In the pin configuration of ATMEGA16/32,we can the pins PB3, PD¢
PD5 and PD7Their special functions are mentioned in the brexck®C0, OC1A
OC1B and OC2). These are the Output Compare pifdMERO, TIMER1 anc
TIMER2 respectively.

HereTCCR1A Registeiplays major role to operate this mc

Ait 7 A g] 3 2 : 0
|cnum1 f comiar [comig: { cosiBEn | FOC1A | FOCIE | WGMI1 | WGMID | TCCR1A
Aasd Wrila R R AW R W w R N

Inigal Valua i a o i o a & o

Now time for us to concentrate Bit 7:6 — COM1A1:0 and Bit 5:4 —
COM1B1:0 — Compare Output Mode for Compare Unit A/B. These bits
control the behavior of the Output Compare (OC)spifhhe behavior chang
depending upon the following mod

* Non-PWM mode (normal /'CTC moc
* Fast PWM mod
» Phase Correct / Phase & Frequency Correct PWM

Right now we are concerned only with the CTC m

COM1Al/ | COM1AO/ | Description

COM1B1 | COM1BO

0 0 Normal port operation, OC1A/OC1B disconnec

0 1 Toggle OC1A/OC1B on compare mal

1 0 Clear OC1A/OC1Bon compare match (Set output
low level)

1 1 Set OC1A/OC1B on compare match (Set outpL
high level)

We choose the second option (INo need to check any flag bit, no neec
attend to any interrupts, nothing. Just set theettito this mode. Wheever a
compare match occurs, the OC1A pin is automatic¢atigled

41

www.sakshieducation.com

www.sakshieducation.com

But we need to compromise on the hardwérely PD5 or PD4 (OC1A or
OC1B) can be controlled this way, which means wmatshould connect the LED
to PD5 (since we are using channel A) instead & 8Celse.

Code:

#include <avr/io.h>
#include <avr/interrupt.h>

// initialize timer, interrupt and variable
void timerl_init()

{
/l set up timer with prescaler = 64 and CTC miode
TCCR1B |= (1 << WGM12)|(1 << CS11)|(2. << CS10);
I/ set up timer OC1A pin in toggle mode
TCCRI1A |= (1 << COM1A0);
Il initialize counter
TCNT1 =0;
/ initialize compare valug
OCRI1A = 24999;
}
int main(void)
{
DDRD |= (1 <<5); // connect led to pin PD5
timerl_init();// tnitialize timer
while(1) // Joep forever
{
// do nothing
/l whenever a match occurs
/[OC1A is toggled automatically!
/I no need to keep track of any flag bit$SR
}
}

42
www.sakshieducation.com

www.sakshieducation.com

Forcing Compare Match:

Bit 3:2in TCCR1A — FOC1A: B — Force Output Compare for Compare
Unit A/B.

Bit r & 5 A 3 2 1 o

| Comtal | comian | COMIE! COs 1 BD FOC1A | FOC1E WGM11 | WGMID | TCCRA
Rasd e R Ry R R Wy W Buwy R
Inigsal Walus o [l o O o a o 5

» These bits ararite only bits.
* They are active only in n-PWM mode.

» For ensuring compatibility with future devices, $hebits must be s
to zero (which thealreadyare by default).

» Setting them to ‘1will result in an immediate forced compare me
and the effect will be reflected in the OC1A/OClB

* The thing to be noted is that FOC1A/FOC1B willnot generate any
interrupt, nor will it clear the timer in CTC mode.

CTC mode -Timer 0/ Timer 2:

In this section we will discuss. about the registedyg.CTC mode of TIMEF

0/ 2 is exactly in the same-way of TIMER 1. So w# discuss about TIMER
now.

TCCRO Register:

The Timer/Counter0 Control Register- TCCR10 Register is ¢
follows:

T = T =] e

ReadWrie I RAY Rt RAY Rl S RAK R
Imitied alis Y i fi I i 0 0 4

Bit 6:3 — WGMO01:00 — Wave Generation Mod¢ — Just like in
TIMERL1, we choose the type of wave mode from herBows.

43
www.sakshieducation.com

www.sakshieducation.com

o Choose 10 for CTC mode.

Mode | WGMO1 | WGMOO | Timer/Counter TOP | Update of| TOVO
(CTCO) | (PWMO) | Mode of OCRO Flag Set-

operation on

0 0 0 Normal OxFF| ImmediateMAX

1 0 1 PWM, PhasgOxFF | TOP BOTTOM
correct

2 1 0 CTC OCRO| Immediate, MAX

3 1 1 Fast PWM OxFF TOP MAX

Table: Wave Generation Mode Bit Description

Bit 5:4 — COMO01:00 — Compare Match Qutput Mode —-They
control the behavior of the OCO (PB3) pin

o depending upon the WGM mode -
= non-PWM,
» Phase Correct PWM mode
« Fast PWM meode

o The selection options of non-PWM mode are as falow

o Choose01 to toggle the LED.

COMO1 {.COMOO | Description

0 0 Normal port operation, OCO disconnected
0 1 Toggle OCO on compare match

1 0 Clear OCO on compare match

1 1 Set OCO on compare match

Table: Compare Output Mode, non-PWM
Bit 7 — FOCO — Force Output Compare -This bit,

o When set to ‘1’ forces an immediate compare matoth a
affects the behavior of OCO pin.

44
www.sakshieducation.com

www.sakshieducation.com

o For ersuring compatibility with future devices, this bnust
be setto ‘O

Bit 2:0 — CS02:0- Clock Select Bits
OCRO Register:

TheOutput Compare Registe— OCRO Register is as follov

Bt T fi 5 4 3 z 1 0
| OCRO[T:0] L | ocro

Read Wit R R any R RIW R RN CR

Initial Value 0 o 0 o a o d o

Fig: OCRO Register
The value to be compared (max 255) is stored gregister
TIMSK Register:

TheTimer/Counter Interrupt Mask — TIMSK Register is as follow

Bil T A B 4 3 2 { 0

I QCIEZ TOIEZ TIGIET) OCIE1A | OCIE1E | TOIET QCIED TOIED TIMSHK
Fasd s R R A R R R R ZHTY
nital Valus 1, i fi 1]] {i { 1]

Fig: TIMSK Register

TheBit.1 — OCIEO - Timer/Counter0 Output Compare Match Interrupt
Enable enables the firing of interrupt whenever a compaatch occur:

TIFR Register:

TheTimer/Counter Flag RegisterTIFR is as follows

45
www.sakshieducation.com

www.sakshieducation.com

B f B 5 4 g i 1 W

[Gora | ova | Ieri | ocria | ocrie | vowi | ook | tow] TeR
Readime AN ALY SHLY A = AAY Ry R
Inifia! Value 0]] 0 1] 0 0 [

Fig: TIFR Register

The Bit 1 — OCFO - Output Compare Flag Ois set whenever.a .comps
match occurs. It is cleared automatically whenether corresponding ISR
executed. Alternatively it icleared by writing ‘1’ to it.

AVR Timers — PWM Mode:

PWM is the technique used to generate ‘analogueaalsignom a digita
device like a MCU. Almost all modern MCUs have.aeded hardware for PWI
signal generation.

PWM can be used to control senmotors, perform DAC (Digital t
Analogue Conversion) etc.

PWM: Pulse Width Modulation:

It is basically a modulation technique, in whicle thidth of the carrier puls
Is varied in accordance withthe analog messagek

In PWM, we generate square wa whoseduty cycle can be varied. Dut
cycle refers to the-fraction of the time periodiué wave for which the signal is
high state (or simply ON stat

high time Tnig

=l [~

low time 7.,
—_—

-

Pperiod T’
Fig: A PWM Waveform.
A PWM signal is a periodic rectangular pu

46
www.sakshieducation.com

www.sakshieducation.com

Frequency = (1/T)
Duty Cycle = (Thign/T)

The simplest way to generate a PWM signal is by paning the
predetermined waveform with a fixed voltage lev@saown below.

TP —
D RN S e
waluae

Timmwar oownk

= e
O A pin ‘
3

It has three¢eompare output modesof operation:

Inverted Mode - In this mode; ifithe waveform value is greatemtiiae
compare level, then the output is.set high, or gleeoutput is low.

Non-Inverted Mode - In, this. mode, the output is high whenever the
compare level is greater.than the waveform levdllaw otherwise.

Toggle Mode -In"this mode, the output toggles whenever thera is
compare match. If the output is high, it becomes knd vice-versa.

But it's always.noet necessary that we have a fo@ahpare level. Those who
have had exposure“in the field of analog/digitahomnication must have come
across cases wheresaw tooth carrier wave is compared with a sinusoida
message. signaks shown below.

47
www.sakshieducation.com

www.sakshieducation.com

T L

Fig: PWM Modulation
Duty Cycle:
The Duty Cycle of a PWM Waveform is given by

T
Duty Oycle = ——— x 100 ¢
uty Cycle Tt T, %

Toff

48
www.sakshieducation.com

www.sakshieducation.com

| Ton | 5026 Duty Cycle
Toff
| |
T
|T€0ﬂ;| 75%6 Duty Cycle
Ton
| | -
T

Fig: PWM with Different Duty cycles.

We are very well aware that the AVR provides ugwaih option of 8 and 16
bit timers. 8bit timers count from 0 to 255, theack to zero and so on. 16bit
timers count.from to 65535, then back to zerausTtor a 8bit timer, MAX = 255

and for a 16bit timer, MAX = 65535.

MAX=TOP

=

www.sakshieducation.com

49

www.sakshieducation.com

MAX MAX>TOP
/ /mp
- / /
MAX Variable TOP
MAX>=TOP

_/

Fig: Fixed and Variable TOP in Timers
Note: TOP never exceeds.MAX. TOP <= MAX.

Before going to PWM concepts in timers we have wara aboutTOP,
Bottom and MAX.

The timer alwayscounts from O to TOP, then overflows back to
zero. Theifigure shown above[OP = MAX.

We knew in CTC Mode, in which we can clear the timéhenever a
compare match occurs. Due to this, the value of T@¥be reduced as shown in
2"%figure. The thick line shows how the timer woulsve gone in normal mode.

Now, the CTC Mode can be extended to introduceabéei TOP as shown in
3" figure.

PWM Modes of Operation:

50
www.sakshieducation.com

www.sakshieducation.com

In general, there are three modes of operationVd¥iPTimers:

« Fast PWM
» Phase Correct PWM
« Frequency and Phase Correct PWM

Fast PWM:

In simple termsthisis Fast PWM! We have a saw tooth waveform, and we
compare it with a fixed voltage level (say A), ahds we get a.PWM output as
shown (in A).

Now suppose we increase the compare voltage leveddy B). In this case,
as we can see, the pulse width has reduced, are teaduty cycle.

A

It

But;as you can see, both the pulses (A and B) enchetsame time
irrespective of their starting time.

In this mode, since saw tooth waveform is usedtither counter TCNTn (n
= 0,1,2) counts from BOTTOM to TOP and then itim@y allowed to overflow
(or cleared at a compare match) to BOTTOM.

51
www.sakshieducation.com

www.sakshieducation.com

Phase Correct PWM:

Here instead of a saw tooth waveform; we have ase@ngular waveform.
Even here, you can see how PWM is generated. Wes@arthat upon increasing
the compare voltage level, the duty cycle reduBes unlike Fast PWM, the phase
of the PWM is maintained. Thus it.is-calledase CorrecPWM.

By visual inspection, we can clearly see that teguency of Fast PWM is
twice that of Phase Correct PWM.

Frequency and Phase/Cerrect PWM:

The datasheets say that theraasdifference between 'phase correct' and
'‘phase and frequency correct' mode# we are not changing the value of TOP on
the fly. Since TOP is dictating our repeating freqey then we aren't changing it
so these.two modes are interchangeable and analogou

So we will cover both of them with one discussiamd avill refer to them
both collectively as 'any phase correct' mode.

The major difference is that 'fast PWM mode' codntepeatedly from
BOTTOM to TOP to generate a saw tooth waveform wagrthese 'any phase

52
www.sakshieducation.com

www.sakshieducation.com

correct modes' will count up from BOTTOM to TOP,dathen from TOP to
BOTTOM so rather than a saw tooth they generatiaagular waveform:

Iicilmlic

Thus, for this, we need Frequency and Phase CdP\l. Since in most
cases the value of TOP remains same, it doesntemahich one we are choosing
— Phase Correct or Frequency and Phase Correct PWM.

Making Choices:
Now that we are familiar with all the PWM concept's, up to you to decide

* Which'timerto choose?
» Which mode of operation to choose?
» _Which compare output mode to choose?

Choosing Timer:

In AVR, PWM Mode is available in all timers. TIMER&Gnd TIMER2
provide 8bit accuracy whereas TIMER1 provides 1@bduracy. In 8bit accuracy,
we have 256 individual steps, whereas in 16bit may we have 65536 steps.

Now suppose we want to control the speed of a D@mdn this case,
having 65536 steps is totally useless. Thus weusaran 8bit timer for this.

53
www.sakshieducation.com

www.sakshieducation.com

Even 8bit is too much, but there is no other chof@bviously there isn’'t
much difference in speed between 123/256th and2b844 of full speed in case of
a motor.

But if we use servo motors, you have to use laimért If we need quite
high resolution in your application, go for 16biher.

Choosing Mode of Operation

If we want to control the speed of DC motors ogbtness of LEDs, go for
any one of them. But if we are using it for telecoumication purposes, or for
signal sampling, fast PWM would be better. For gahapplications, phase correct
PWM would do.

Choosing Compare Output Modes
Out of the three modes,

* inverted,
* non-inverted
* toggle mode,

Non-inverted mode is‘the most reasonable. Thieabse upon increasing
the compare voltage, the duty.cycle increases. Mekyg/ou can choose any of
them.

Example: Let us take a problem statement. We need to genar&0 Hz
PWM signal having45% duty cycle.

Analysis:
Given that
Frequency = 50 Hz
In other words, the time period, T
T=T (on) + T (off) = 1/50 = 0.02 s = 20 ms

Also, given that

54
www.sakshieducation.com

www.sakshieducation.com

Duty Cycle = 45%
Thus, solving according to equation given abovegete
T (on) =9 ms
T (off) = 11 ms
Now, this can be achieved in two ways:

e Use Timerin CTC Mode
e Use Timer in PWM Mode

Methodology — CTC Mode:

» Firstly, choose a suitable timer.
o For this application, we can-choose any of theethinmers
available in ATMEGAS32.

* Choose a suitable prescaler.
* Then set up the timer and proceed as usual.

Note:The catch lies here.is/that you need to updatectimepare value of
OCRX register every time.

Code:

#include <avr/io.h>
#include'<avr/interrupt.h>

uint8 (t.count = O; // global counter
voidtimerX_init() // initialize timer, interrupt and variable
{

/Il set up timerX with suitable prescaler andddWhode
/ initialize counter

// initialize compare value

// enable compare interrupt

// enable global interrupts

}
ISR (TIMERXx_COMPA _vect)// process the ISR that is fired

{

// do whatever you want to do here say, incremieatdglobal
counter

55
www.sakshieducation.com

www.sakshieducation.com

count++;
/I check for the global counter
/['if count == odd, delay required = 11 ms
/['if count == even, delay required = 9 ms
/l thus, the value of the OCRXx should be conbstaipdated
if (count % 2 == 0)
OCRx =9999; // calculate and substitute appropriate

value
else
OCRx =10999; // calculate and substitute appropriate
value
}
int main(void)
{
DDRC |= (1 << 0) initialize the output pin, say PCO
timerX_init(); // initialize timerX
while(1) // loop forever
{
// do nothing
}
}

Methodology — PWM Mode;

The PWM Mode in~ AVR is hardware controlled. This ans that
“everything”, is done by the AVR CPU. All we need to do isriialize and start
the timer, and set the-duty cycle.

We can chooese any timer of AVR microcontroller, ehnave are using
TIMERO.

TCCRO = Timer/Counter0Q Control Register:

Here, we will learn how to set appropriate bitsrio the timer in PWM
mode.

B 7 2 5 4 3 2 -. f
|_Foco | WaMoo | ommt | cowoo | wamit | cse2 | csor | €S0 | TecRe
Read Write W RW RW RW RW RW RW RW

Initiad Ve i i 0 b i f i o

56
www.sakshieducation.com

www.sakshieducation.com
Fig: TCCRO Register

We will discuss only those bits which are of ingtr® us now.

Bit 6, 3 — WGMO01, 00 — Waveform Generation Mode These bits

can be set to either “00r “01" depending upon the type of PWM
you want to generate.

Mode | WGMO1 | WGMOO | Timer/Counter TOP | Update of| TOVO
(CTCO) | (PWMO) | Mode of OCRO Flag Set-

operation on

0 0 0 Normal OxFF| ImmediateMAX

1 0 1 PWM, PhasgOxFF | TOQP BOTTOM
correct

2 1 0 CTC OCRO/ Immediatef MAX

X N

Fig: Waveform Generation Mode Bit Description

Bit 5, 4 — COMO01:0 — Compare Match Output Mode- These bits

are set in order to control.the behavior of Oupampare pin (OCO0)
in accordance with the WGMO1:00 bits.

The following look up table to determine the opierag of OCO pin for Fast PWM
mode.

COMO1 | COMQO+} Description

0 0 Normal port operation, OCO disconnected
0 1 Toggle OCO on compare match

1 1 Set OCO on compare match

Fig:Compare Output Mode, Fast PWM Mode

Now let’'s have a look at the Fast PWM waveforms.

57
www.sakshieducation.com

www.sakshieducation.com

Fig: Fast PWM

Now let me remind you that the AVR .PWM is fully karare controlled,

which means that even the timer compare operasiaione by the AVR CPU. All
we need to do is tell the CPUwhatto do once a match occurs.

The COMO01:00 pins come‘into.play here. We seelihatetting it to “10 or
“11", the output pin OCO is either set or cleared (imeo words, it determines
whether the PWM is in inverted mode, or in non-nmee mode).

Similarly for Phase Correct PWM, the look up tabhtel the waveforms go
like this.

COMO1 | COMOO | Description

0 0 Normal port operation, OCO disconnected

0 1 Reserved

1 1 Set OCO on compare match when |up-
counting. Clear OCO on compare match
when down-counting.

Fig: Compare Output Mode, Phase Correct PWM Mode

58
www.sakshieducation.com

www.sakshieducation.com

>l

Fig: Phase Correct PWM

Setting of COMO01:00 to “10or “11” determines the behavior of OCO pin.
As shown in the waveforms, there are two instarcese during up-counting, and
other during down-counting. The behavior is cleasgcribed in the look up table.

Please note that OCOtis an output pin. Thus, tleetsfof WGM and COM

won’'t come into play unless'the.DDRX register isgeperly.

Bit 2:0 — CS02:0. ==Clock Select Bits These bits are used to select

prescaler.

OCRO — Output Compare Register

We use this register to store the compare valuewBen we use Timer0 in
PWM mode, the value stored in it acts as the duytylec(obviously!). In the

problem statement, it's given that the duty cysld%%, which means

OCRO = 45% of 255 = 114.75 = 115

Edit: Note

www.sakshieducation.com

59

www.sakshieducation.com

The following code discusses how to create a PWiviadiof a desired duty
cycle. If we want to change its frequency, you needlter the TOP value, which
can be done using the ICRx register (which is nppsrted by 8-bit timers). For
16-bit Timerl, it can be varied using ICR1A.

Code:

#include <avr/io.h>
#include <util/delay.h>
voidpwm_init()
{
Il initialize TCCRO as per requirement, say a0l
TCCRO |=
(1<<WGMO00)|(1<<COMO01)|(1<<WGMO01)|(1<<CS00);
/I make sure to make OCO pin (RINWBY for atmegal32)utput

pin
DDRB |= (1<<PB3);
}
void main()
{
uint8_t duty;
duty = 115; 4, duty cycle = 45% of 255 =114.75 = 115
/[initializeftimgr in PWM mode
pwm_init();
I/ wunl fotever
while(1)
{
OCRO = duty;
}
}

60
www.sakshieducation.com

