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Unit – 1:    Information Theory 
 
1.1 Introduction: 
 
 Communication 
 

Communication involves explicitly the transmission of information from one point to another, 
through a succession of processes. 
 
  Basic elements to every communication system 
 

o  Transmitter 
 

o  Channel and 
 

o  Receiver 
 

    Communication System     
 

             
 

Source             User 
 

of   Transmitter   CHANNEL   Receiver   of 
 

information 
           

information 
 

           
 

             
 

Message Transmitted Received Estimate of  
 

 signal   Signal signal message signal  
 

 

 Information sources are classified as: 
 

 
INFORMATION  

SOURCE 
 
 

ANALOG DISCRETE 
 
 

 

 Source definition 


Analog : Emit a continuous – amplitude, continuous – time electrical wave 

from. Discrete : Emit a sequence of letters of symbols. 


The output of a discrete information source is a string or sequence of symbols. 
 
1.2 Measure the information: 
 

To measure the information content of a message quantitatively, we are required to arrive at 
an intuitive concept of the amount of information. 
 

Consider the following examples: 
 

A trip to Mercara (Coorg) in the winter time during evening hours, 
 

1. It is a cold day  
 

2. It is a cloudy day  
 

3. Possible snow flurries  
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Amount of information received is obviously different for these messages. 
 

o Message (1) Contains very little information since the weather in coorg is ‘cold’ for most 
part of the time during winter season.  

 
o The forecast of ‘cloudy day’ contains more informat ion, since it is not an event that 

occurs often.  
 

o In contrast, the forecast of ‘snow flurries’ convey s even more information, since the 
occurrence of snow in coorg is a rare event.  

 
On an intuitive basis, then with a knowledge of the occurrence of an event, what can be said 
about the amount of information conveyed? 

 
It is related to the probability of occurrence of the event. 

 
What do you conclude from the above example with regard to quantity of information? 

Message associated with an event ‘least likely to occur’ contains most information. The 

information content of a message can be expressed quantitatively as follows: 

The above concepts can now be formed interns of probabilities as follows:  

Say that, an information source emits one of ‘q’ po ssible messages m1, m2 …… m q with p1, p2 …… 

pq as their probs. of occurrence.  

Based on the above intusion, the information content of the k
th

 message, can be written as 
 

I (mk)   
1       

 

p k 
     

 

       
 

Also to satisfy the intuitive concept, of information. 
 

I (mk) must zero as pk 1    
 

Therefore,      
 

    
 

 I (mk) > I (mj);    if  pk < pj   
 

 I (mk) O (mj); if  pk 1 ------ I 
 

 I (mk) ≥ O; when O < pk < 1   
 

         
 

 

Another requirement is that when two independent messages are received, the total 
information content is – 
 

Sum of the information conveyed by each of the messages. 
 

 

Thus, we have 

 We 

I (mk  & mq)  I (mk & mq) = Imk + Imq ------ I 
 

  

  
 

can define a measure of information as –  
 

 

  1   
 

  
 

 ------ III  

  

 I (mk ) = log    

 
p

 k  
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Unit of information measure  

Base of the logarithm will determine the unit assigned to the information content.  

Natural logarithm base   :   ‘nat’  

Base - 10 :   Hartley / decit  

Base - 2 :   bit  

Use of binary digit as the unit of information?  

Is based on the fact that if two possible binary digits occur with equal proby (p1 = p2 = 

½) then the correct identification of the binary digit conveys an amount of information.  

I (m1) = I (m2) = – log 2 (½ ) = 1 bit 
 

 One bit is the amount if information that we gain when one of two possible and equally 

likely events occurs. 
 
Illustrative Example 
 

A source puts out one of five possible messages during each message interval.  The probs. of  

these messages are p1 = 1 ; p2 = 1 ; p1 = 1 : p1 =  1 , p5  1 
 

   

16 16 
 

 2  4  4   
  

What is the information content of these messages? 
 

1 
I (m1) = - log2 = 1 bit 

2 
 

1 
I (m2) = - log2 = 2 bits 

4 
 

1 
I (m3) = - log = 3 bits 

8 
 

1 
I (m4) = - log2 = 4 bits 

16 
 

1 
I (m5) = - log2 = 4 bits 

16 
 

 

HW: Calculate I for the above messages in nats and Hartley 
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Digital Communication System:            
 

  

Message signal 

 Estimate  of   the 
 

 Source of  Message signal    User of  
 

 information               information  
 

                  
 

                  
 

   Source       Source    
Receiver 

 

 

Transmitter 
 

Encoder 
      

decoder 
   

 

             
 

   

 

Source 
            

         Estimate of   
 

    code word   source codeword 
 

   Channel       Channel      
 

   Encoder       decoder      
 

                   

   

 

Channel 
       

of 
 

       Estimate  
 

    code word   channel codeword 
 

   Modulator       Demodulator    
 

                  
 

    
Waveform 

   Received      
 

     

Channel 
  signal      

 

              
 

                 
 

                  
 

 

Entropy and rate of Information of an Information Source / 
 
Model of a Mark off Source 
 

 

1.3 Average Information Content of Symbols in Long Independence Sequences  

Suppose that a source is emitting one of M possible symbols s0, s1  ….. s  M  in a statically 

independent sequence      
 

Let p1, p2, …….. p M be the problems of occurrence of the M-symbols resply. suppose further 
 

that during a long period of transmission a sequence of N symbols have been generated. 
 

On an average – s 1 will occur NP1 times     
 

S2 will occur NP2 times     
 

: :     
 

si will occur NPi times     
 

   1  
 

The information content of the i th  symbol is I (si) = log  
 

 bits  

  

    

  
p

i  
 

 PiN occurrences of si contributes an information content of  
 

1  
i i i   

p
i  

 

 Total information content of the message is = Sum of the contribution due to each of
bitsPN.I(s)=PN.log
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M symbols of the source alphabet 
 

M  1   
 

   

 
 

 
 bits  

   

i.e., Itotal = ∑NP1 log    

i 1 

p
i  

 

 Averageinforamtion content I
 total M  1  bits per 

 

H =   
 

 
 ---- IV  

    

  ∑NP1 log    

per symbol in given by N i 1 

p
i symbol 

 

This is equation used by Shannon 
 

Average information content per symbol is also called the source entropy. 
 

 

1.4 The average information associated with an extremely unlikely message, with an extremely 

likely message and the dependence of H on the probabilities of messages 
 

consider the situation where you have just two messages of probs. ‘p’ and ‘(1-p)’. 
 

Average information per message is  H = p log 
1 
 (1  p) log 

 1 
 

p 1  p 
 

  
 

 
At p = O, H = O and at p = 1, H = O again, 

 
The maximum value of ‘H’ can be easily obtained as, 
H = ½ log 2 + ½ log 2 = log  2 = 1 

max 2 2 2  

 Hmax = 1 bit / message 
 

Plot and H can be shown below 
 

H 
 

 
1 

 

 
½ 

O 
P 

 
The above observation can be generalized for a source with an alphabet of M symbols. 

 

 

Entropy will attain its maximum value, when the symbol probabilities are equal, 
 

i.e., when p1 = p2 = p3 = …………………. = p M = 
1  

 

M 
 

         
 

 Hmax = log2 M bits / symbol    
 

          
 

 Hmax = ∑p M log 
 1      

 

p M 
   

 

       
 

 Hmax = ∑p M log  1      
 

       
 

  1      
 

     M    
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 Hmax = ∑ M
1

 log 2 M  log 2 M  
 

 Information rate  

If the source is emitting symbols at a fixed rate of ‘’r s’ symbols / sec, the average source 

information rate ‘R’ is defined as –  

R = rs . H  bits / sec 
 

 

 Illustrative Examples  

1.  Consider a discrete  memoryless  source  with  a  source  alphabet  A  =  {  so,  s1,  s2}  with 
 

respective probs. p0 = ¼, p1 = ¼, p2 = ½. Find the entropy of the source. 
 

Solution: By definition, the entropy of a source is given by 
 

M    
1 

          
 

H  =  ∑ pi log 
  

bits/ symbol 
  

 

pi 
  

 

i 1            
 

H for this example is      
 

    2     
1 

      
 

H (A)  = ∑ pi  log  
     

 

       
 

   i  0      pi      
 

Substituting the values given, we get   
 

H (A)  = po log 
1  +  P1 log 

1 
 p2  log 

1  
 

Po 
  

p2 
 

           p1 
 

=  ¼ log2 4 + ¼ log2 4 + ½ log2  2   
 

3                
 

=  

  = 1.5 bits       

       

2                
 

if rs = 1 per sec, then      
 

H′ (A) = rs  H (A) = 1.5 bits/sec   
 

 
2. An analog signal is band limited to B Hz, sampled at the Nyquist rate, and the samples are 

quantized into 4-levels. The quantization levels Q1, Q2, Q3, and Q4 (messages) are assumed 
independent and occur with probs.  

 

P1 = P2 = 1 and P2 = P3 =  3 . Find the information rate of the source.  

  

8 
 

 8                
 

Solution: By definition, the average information H is given by 
 

H =  p   log 1   +  p  log 1  + p   log 1 + p  log 1   

    

2 
 

3 
 

4 
  

1  
p1 

  
p2 

    
p3 

   
p4 

 

               
 

Substituting the values given, we get       
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H = 1  log 8 + 3 log 8 + 3 log 8 + 1 log 8  

       

 8  8 3 8 3 8  
 

=  1.8 bits/ message.        
 

 Information rate of the source by definition is 
 

R  =  rs H          
 

R =  2B, (1.8) = (3.6 B) bits/sec    
 

 

 

3. Compute the values of H and R, if in the above example, the quantities levels are so chosen 

that they are equally likely to occur,  
 
Solution: 
 

Average information per message is 
H = 4 (¼ log 4) = 2 bits/message 

2 
 

and R =  rs  H = 2B (2)  = (4B) bits/sec 
 

 

1.5 Mark off Model for Information Sources 
 
Assumption 
 

A source puts out symbols belonging to a finite alphabet according to certain probabilities 

depending on preceding symbols as well as the particular symbol in question. 

 
 Define a random process 
 

A statistical model of a system that produces a sequence of symbols stated above is and which 

is governed by a set of probs. is known as a random process. 

 
Therefore, we may consider a discrete source as a random process 
 
And the converse is also true. 

 
i.e. A random process that produces a discrete sequence of symbols chosen from a finite set 

may be considered as a discrete source. 

 
 Discrete stationary Mark off process? 
 

Provides a statistical model for the symbol sequences emitted by a discrete source. 
 
General description of the model can be given as below: 

 
1. At the beginning of each symbol interval, the source will be in the one of ‘n’ possible states 1, 2, 

….. n  

 
Where  ‘n’ is defined as 
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n ≤ (M)
m

 
 

M =  no of symbol / letters in the alphabet of a discrete stationery source, 
 

m =  source is emitting a symbol sequence with a residual influence lasting 
 

‘m’ symbols. 
 

i.e. m:  represents the order of the source. 
 

m =  2 means a 2
nd

 order source 
 

m =  1 means a first order source. 

 
The source changes state once during each symbol interval from say i to j. The probabilityy of 

this transition is Pij. Pij depends only on the initial state i and the final state j but does not depend on 

the states during any of the preceeding symbol intervals. 
 

2. When the source changes state from i to j it emits a symbol.  

 Symbol emitted depends on the initial state i and the transition ij.  

3. Let s1, s2, ….. s M be the symbols of the alphabet, and let x1, x2, x3, …… x k,…… be a sequence of 

 random variables, where xk represents the k
th

 symbol in a sequence emitted by the source. 

 Then, the probability that the k
th

 symbol emitted is sq will depend on the previous symbols x1, x2, 

 x3, …………, x k–1  emitted by the source.  

 i.e., P (Xk = sq / x1, x2, ……, x k–1 )  

4. The residual influence of   

 x1, x2, ……, x k–1  on xk is represented by the state of the system at the beginning of the k
th

 symbol 

 interval.    

 i.e. P (xk = sq / x1, x2, ……, x k–1 ) = P (xk = sq / Sk)  
 

When Sk in a discrete random variable representing the state of the system at the beginning of the 

k
th

 interval. 
 

Term ‘states’ is used to remember past history or residual influence in the same context as the use 

of state variables in system theory / states in sequential logic circuits. 
 
System Analysis with regard to Markoff sources 
 
Representation of Discrete Stationary Markoff sources: 
 

o Are represented in a graph form with the nodes in the graph to represent states and the 
transition between states by a directed line from the initial to the final state.  
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o Transition probs. and the symbols emitted corresponding to the transition will be shown 
marked along the lines of the graph.  

 
A typical example for such a source is given below. 

 

C 
½ 

 

P1(1) = 
1
/3 

 

2 
P2(1) = 

1
/3  

P3(1) = 
1
/3 

¼ 
C ¼  

  

 

C  

  
 

A B  

¼ ¼  

 
 ¼   

 

1 
B 3 

½   B 
 

½  A A   
 

    

 ¼   
 

 

 

o  It is an example of a source emitting one of three symbols A, B, and C 
 

o The probability of occurrence of a symbol depends on the particular symbol in question and 
the symbol immediately proceeding it.  

 
o  Residual or past influence lasts only for a duration of one symbol. 

 
Last symbol emitted by this source 
 

o The last symbol emitted by the source can be A or B or C. Hence past history can be 
represented by three states- one for each of the three symbols of the alphabet.  

 

 Nodes of the source 


o Suppose that the system is in state (1) and the last symbol emitted by the source was A.  
 

o The source now emits symbol (A) with probability ½and returns to state (1). 

OR 
 

o The source emits letter (B) with probability ¼ andgoes to state (3) 

OR 
 

o  The source emits symbol (C) with probability ¼ andgoes to state (2).  
¼ To state   2 

 

A  1 C  ¼ To state   3  

 

B 
 

½  
 

  
 

 
State transition and symbol generation can also be illustrated using a tree diagram. 

 

 

Tree diagram 
 
 Tree diagram is a planar graph where the nodes correspond to states and branches 

correspond to transitions. Transitions between states occur once every Ts seconds. 


Along the branches of the tree, the transition probabilities and symbols emitted will be 
indicated.Tree diagram for the source considered 
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Symbol  
probs. 

 
 
 
 

 

1
/3   1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
/3   2 

 
 
 
 

 

Symbols  
emitted 

 
1 

A 
 
½ 
 

¼ 
C 

 

2   
 

 

 

¼  
B 

3 
 
 
 
 

 

1 
A 

 
¼  

 

½ 
C 

 

2   
 

 

 

¼  
B 

3 

 
 
 
 
 
 
 

½ 
A 1 AA  

 
 

¼  C 
  

 

 2  AC  

 

B 
 

¼ 
3  AB 

 

 
 

  
 

 A 
1 CA  

  
 

 C 
2 CC  

 

B 
 

 

3  CB 
 

  
 

 A 
1 BA  

  
 

 C 
2 BC  

 

B 
 

 

3  BB 
 

  
 

 A 1 AA  

  
 

 C 
2  AC  

 

B 
 

 

3  AB 
 

  
 

 A 
1 CA 

 

 

C 
 

 
2 CC 

 

 
B 

 

   
 

  3  CB 
 

 A 
1 BA  

  
 

 C 
2 BC  

  
 

B 
3  BB 

 
 
 

 

Symbol 

sequence 

 
 

 

    1 
 

    A 
 

   ¼  
 

1 /3 
 

¼ 
C 

 

3 2    
 

 
Initial 

state ½ 
 

B 
3 

 

State at the end of the 
first symbol internal 

 
 

 

 
 

A 1 AA  

 
 

C 
2  AC  

B 
 

3  AB 
 

 
 

A 
1 CA  

 
 

C 
2 CC  

B 
 

3  CB 
 

 
 

A 
1 BA  

 
 

C 
2 BC  

 
 

B 
3  BB  

State at the end of the 
second symbol internal 

 
 
 

 



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 15 

 

  
 
 

Use of the tree diagram 
 
Tree diagram can be used to obtain the probabilities of generating various symbol sequences. 
 

 

Generation a symbol sequence say AB 
 
This can be generated by any one of the following transitions: 

 

1 2 3 

 OR  

2 1 3 

 OR  

3 1 3 
 

 

Therefore proby of the source emitting the two – s ymbol sequence AB is given by 
 
 

P(AB)  = P  ( S1 =  1,  S2  = 1,  S3 = 3 ) 

   Or   

P ( S1 = 2, S2 = 1, S3 = 3 ) ----- (1) 

   Or   

P ( S1 = 3, S2 = 1, S3 = 3 )  
 

 

Note that the three transition paths are disjoint. 
 
 

Therefore P (AB)  =  P ( S1 = 1,  S2 = 1,  S3 = 3 ) +  P ( S1  = 2,  S2  = 1,  S3  = 3 ) 

+ P ( S1  = 2, S2  = 1,  S3  = 3 ) ----- (2) 

The first term on the RHS of the equation (2) can be written as 

P ( S1   = 2,  S2  = 1,  S3  = 3 )   

=  P ( S1 = 1) P (S2 = 1 / S1 = 1) P (S3 = 3 / S1  = 1, S2 = 1) 

=  P ( S1 = 1) P (S2 =  1 / S1= 1) P (S3 = 3 / S2 = 1) 
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Recall the Markoff property.  

Transition probability to S3 depends on S2 but not on how the system got to S2. 
 
 

Therefore,  P (S1 = 1, S2 = 1, S3 = 3 ) = 
1
/3 x ½ x ¼ 

 
 
Similarly other terms on the RHS of equation (2) can be evaluated. 
 

 

1 1 1 4 1 
 

Therefore P (AB) = /3 x ½  x ¼  + /3 x ¼ x ¼  + /3 x ¼ x ¼  =  =   

48 
 

 

   12 
 

 
 
Similarly the probs of occurrence of other symbol sequences can be computed. 
 
Therefore, 
 

In general the probability of the source emitting a particular symbol sequence can be 

computed by summing the product of probabilities in the tree diagram along all the paths that yield 
the particular sequences of interest. 
 

 

Illustrative Example: 
 
1. For the information source given draw the tree diagram and find the probs. of messages of lengths 
1, 2 and 3. 
 

 ¼   
 

A  1 
C 

2   B3 
 

 

C /4  
3
/4 ¼ 

 
 

  
 

p1 = ½  P2 = ½  
 

 

Source given emits one of 3 symbols A, B and C 
 

 

Tree diagram for the source outputs can be easily drawn as shown. 
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A 

¾ 1 
 

   
 

A 1  
2 

 

 C ¼  

    

¾    
 ½

  1    
 

C 
C 

¼ 1 
 

¼   
 

 2  

2 
 

 B ¾  

   
 

 
A 

¾ 1 
 

   
 

C 1  

2 
 

 C ¼  

    

¼    
 ½

  2    
 

B 
C 

¼ 1 
 

¾   
 

 2  

2 
 

 B ¾  

   
 

 
 
Messages of length (1) and their probs 
 

A ½  x ¾ =  
3
/8   

B ½ x ¾  =  
3
/8  

1  1 

C ½ x ¼ + ½ x ¼ = = ¼ 8 8 
 
 
 
Message of length (2) 
 
How may such messages are there? 
 

Seven 
 
Which are they? 
 

AA,  AC, CB, CC, BB, BC & CA 
 
What are their probabilities? 
 
   9  

 

Message AA :  ½  x ¾  x ¾ =   
 

   

   32  
 

Message AC: ½ x ¾ x ¼ = 
3  

and so on.  

32 
 

 

     
 

 

 

Tabulate the various probabilities  

 
 
 
 

A ¾ 1 AAA  

 
 

C ¼ 2 AAC 
 

C ¼ 1  ACC 
 

B 
3
/4 2 ACB 

 

A ¾ 1 CCA  

 
 

C ¼ 2 CCC 
 

C ¼ 1 CBC 
 

B 
3
/4 2 CBB 

 

A ¾ 1 CAA  

 
 

C ¼ 2 CAC 
 

C ¼ 1  CCC 
 

B 
3
/4 2 CCB 

 

A ¾ 1 BCA  

 
 

C ¼ 2 BCC 
 

C ¼ 1 BBC 
 

B 
3
/4 2 BBB 
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Messages of Length (1) Messages of Length (2) Messages of Length (3) 
 

 3   9  27 
 

A   

  AA  

   

 AAA         

 

 

8 
            

     32  128 
 

 3   3   9        
 

B   

  AC     

 AAC           

 

 

8 
     

128 
 

 

     32     
 

 1   3   3        
 

C    

 CB     

 ACC           

 

 

4 
     

128 
  

 

    32      
 

       2   9        
 

     CC     

 ACB           

 

 

         

128 
   

      32      
 

       9   27   
 

     BB     

 BBB        

 

   

                   

      32 128   
 

      3  9       
 

     BC    

 BBC          

 

 

                 
 

     32 128  
 

       3     3     
 

     CA     

 BCC          

 

 

         

128 
   

      32     
 

                9     
 

            BCA          

 

 

            

128 
  

               
 

                3     
 

            CCA          

 

 

            

128 
 

 

               
 

                3     
 

            CCB          

 

 

            

128 
   

                
 

                2     
 

            CCC          

 

 

            

128 
   

                
 

                3     
 

            CBC          

 

 

            

128 
   

                
 

                3     
 

            CAC          

 

 

            

128 
 

 

               
 

                9     
 

            CBB          

 

 

            

128 
   

                
 

             9     
 

            CAA        

 

 

                    

            128  
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 A second order Markoff source  
Model shown is an example of a source where the probability of occurrence of a symbol 

depends not only on the particular symbol in question, but also on the two symbols proceeding it.  
A        

P1 
2 

 

1 
/8 

 

1/ 
   (1) 

 

 
1 

 
2 

  18 
 

(AA) 
 A  

(AA) 
 7  

 3
/4 

  

P2 
 

    (1) 
 

7
/8 B 

B  3
/4 

7
/8 

 18 
 

  

7  

  P3  

      B 
(BB) 

(1) 
 

    
B 

   18 
 

(AB) 4 
  

3 
1
/8 P4 

2 
 

    

1 
/4 

 (1) 
 

      B  18 
 

          

No. of states: n ≤ (M)
m

;       
 

4 ≤ M
2
          

 

 M = 2          
 

 
m = No. of symbols for which the residual influence lasts 

(duration of 2 symbols)  
or 

M = No. of letters / symbols in the alphabet. 

 
Say the system in the state 3 at the beginning of the symbols emitted by the source were BA. 

 
Similar comment applies for other states. 

 

 

1.6 Entropy and Information Rate of Markoff Sources 
 
 Definition of the entropy of the source 
 

Assume that, the probability of being in state i at he beginning of the first symbol interval is 
the same as the probability of being in state i at the beginning of the second symbol interval, and so 

on. 
 

 

The probability of going from state i to j also doesn’t depend on time, Entropy of state ‘i’ is 
defined as the average information content of the symbols emitted from the i-th state. 
 

n 
1 

  
 

Hi  ∑ pij  log2 bits / symbol ------ (1)    

 
 

j 1 
p

ij  
 

Entropy of the source is defined as the average of the entropy of each state. 
 

n  

i.e. H = E(Hi) =  ∑pi  Hi ------ (2) 
j 1 

 
Where, 

 
Pi = the proby that the source is in state ‘i'. 

 
Using eqn (1), eqn. (2) becomes, 
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n  n  
1 

    
 

H = ∑ pi  ∑ 
p

ij log  
 bits / symbol ------ (3)  

 

 

 

 

       
 

i 1  j 1  
p

ij    
 

 
Average information rate for the source is defined as  

R = rs . H bits/sec  

Where, ‘r s’ is the number of state transitions per second or the symbol rate of the source. 
 

The above concepts can be illustrated with an example 
 
Illustrative Example: 
 
1. Consider an information source modeled by a discrete stationary Mark off random process shown 

in the figure. Find the source entropy H and the average information content per symbol in messages 

containing one, two and three symbols. 
 

 ¼   
 

A  1 
C 

2   B3 
 

 

C /4  3
/4 ¼ 

 
 

  
 

p1 = ½  P2 = ½  
 

 

 The source emits one of three symbols A, B and C. 

 A tree diagram can be drawn as illustrated in the previous session to understand the various 

symbol sequences and their probabilities. 
 

  
¾ 

A ¾ 1 AAA  

    

 

A 
1  

2 AAC 
 

  C ¼ 
 

A 1  C ¼ 1 ACC 
 

 C 
¼ 

2 
3
/4 2 ACB 

 

  

B 
 

¾   
 

       ½
  1   A ¾ 1 CCA  

C 
 

¼ 
 

 1    
 

¼ C  C ¼ 2 CCC 
 

 2  C ¼ 1 CBC 
 

 B 
¾ 

2  

2 CBB 
 

  
B 

3
/4 

 

   
 

  
¾ 

A ¾ 1 CAA 
 

    

 

A 
1  

2 CAC 
 

  C ¼ 
 

C 1  C ¼ 1 CCC 
 

 C ¼ 2 
3
/4 2 CCB 

 

  

B 
 

¼   
 

       ½
  2   A ¾ 1 BCA  

B 
 

¼ 
 

 1    
 

¾ C  C ¼ 2 BCC 
 

 2  C ¼ 1 BBC 
 

 B 
¾ 

2  

2 BBB 

 

  

B 
3
/4 
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As per the outcome of the previous session we have 
 

Messages of Length (1) Messages of Length (2) Messages of Length (3) 
 

 3   9  27 
 

A   

  AA  

   

 AAA         

 

 

8 
            

     32  128 
 

 3   3   9        
 

B   

  AC     

 AAC           

 

 

8 
     

128 
 

 

     32     
 

 1   3   3        
 

C    

 CB     

 ACC           

 

 

4 
     

128 
  

 

    32      
 

       2   9        
 

     CC     

 ACB           

 

 

         

128 
   

      32      
 

       9   27   
 

     BB     

 BBB        

 

   

                   

      32 128   
 

      3  9       
 

     BC    

 BBC          

 

 

                 
 

     32 128  
 

       3     3     
 

     CA     

 BCC          

 

 

         

128 
   

      32     
 

                9     
 

            BCA          

 

 

            

128 
  

               
 

                3     
 

            CCA          

 

 

            

128 
 

 

               
 

                3     
 

            CCB          

 

 

            

128 
  

 

                
 

                2     
 

            CCC          

 

 

            

128 
   

                
 

                3     
 

            CBC          

 

 

            

128 
   

                
 

                3     
 

            CAC          

 

 

            

128 
 

 

               
 

                9     
 

            CBB          

 

 

            

128 
   

                
 

             9     
 

            CAA        

 

 

                    

            128  
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By definition Hi is given by 
 
    n       

1 
            

 H
i 


 ∑
p

ij  log 
             

 

 p
ij 

            
 

    j1                   
 

Put i = 1,                            
 

   n  2       
1 

          
 

Hi 


 ∑
p

1 j  log 
          

 

 p
1 j 

         
 

    j1                 
 

p  log  1   p    log 1      
 

               

11      p
11 

   12       p
12 

    
 

                        
 

Substituting the values we get,    
 

H1 
 
 

3   
log2 

  1      
 

1 
log 

 1  
 

               

2  
 

 

 

 

4 
  

3 / 4 4 
 

 

              1/ 4  
 

3       4   1         
 

=   

log 2   

 
  

 

    

log2  4    
 

            
 

4       3   4         
 

H1 = 0.8113        
 

Similarly H2 = 1 log 4 + 3 log 4 = 0.8113  
    

 4 4 3  
  

By definition, the source entropy is given by, 
 

  n 2   
 

H  ∑pi Hi    ∑pi Hi 
 

  i 1 i 1  
 

= 1 (0.8113) +  1 (0.8113)  
 

2 
 

2   
  

= (0.8113) bits / symbol 
 

 

To calculate the average information content per symbol in messages containing two symbols. 
 
 How many messages of length (2) are present? And what is the information content of these 

messages? 
 
There are seven such messages and their information content is: 
 
 1      1  

 

I (AA) = I (BB) = log 

    
= log 

   
 

( AA) 
 

 

(BB

) 
 

       
 

i.e., I (AA) = I (BB) = 

log 

  1  = 1.83 bits 
 

       

(9 / 

32) 
  

 

         
 

Similarly calculate for 

other messages and 

verify that they are 
 

I (BB) = I (AC) = log  1  

=

 

3

.

4

1

5
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b

i

t

s 
       

I (CB) = I (CA) = 

(3 / 
32)      
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I (CC) = log = 1 = 4 bits  

  

P(2 / 32) 
 

  
 

 
 Computation of the average information content of these messages. 
 

 

Thus, we have 
 

7 
1 

 
 

H(two)= ∑Pi  log bits / sym.  

 
 

i  1 Pi 
  

7 

= ∑Pi . Ii  
i  1  

 

Where Ii = the I’s calculated above for different messages of length two 
 

 

Substituting the values we get,  
H

 (two)  
9 

(1.83)  
3 

x (3.415)   
3 

(3.415)  
2 

(4)  
3 

x (3.415)  

     
 

 32    32   32 32 32  
 

   3  x (3.415)  9 x (1.83)      
 

 

32 
        

    32        
 

 


 

H
 (two)  2.56 bits        

 

 Computation of the average information content per symbol in messages containing two 
symbols using the relation. 

 
 

GN = Average information content of the messages of length  N 

Number of symbols in the message 
 

Here, N = 2  

 GN = Average information content of the messages of length 

(2) 2 
H

 ( two ) 
= 

2 
 

= 
2.56

  1.28 bits / symbol 
2 

 
 G 2  1.28 

 

Similarly compute other G’s of interest for the problem under discussion viz G 1 & 

G3. You get them as 
 

G1 = 1.5612 bits / symbol 

And G3 = 1.0970 bits / symbol 
 
 from the values of G’s calculated 


We note that, 
 
  



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 25 

 

 

G1 > G2 > G3 > H 
 

 

 Statement 


It can be stated that the average information per symbol in the message reduces as the length of 
the message increases. 


 The generalized form of the above statement 

If P (mi) is the probability of a sequence mi of ‘N’ symbols form the source with the average 

information content per symbol in the messages of N symbols defined by 

 ∑P(mi ) log P(mi ) 

GN = 
i 

 

N  

 
  

Where the sum is over all sequences mi containing N symbols, then GN is a monotonic decreasing 

function of N and in the limiting case it becomes. 
 
 

Lim GN = H bits / symbol 
 

N  
 

 

Recall H = entropy of the source 
 

The above example illustrates the basic concept that the average information content per symbol 
from a source emitting dependent sequence decreases as the message length increases. 

 
 It can also be stated as, 


Alternatively, it tells us that the average number of bits per symbol needed to represent a message 
decreases as the message length increases. 

 
Problems: 

 
Example 1 

 
The state diagram of the stationary Mark off source is shown below 

 
Find  (i)  the entropy of each state 

 
(ii) The entropy of the source  

(iii) G1, G2 and verify that G1 ≥ G2 ≥ H the entropy of the source.  
 

½ 
C 

P(state1) = P(state2) = 
2 

P(state3) = 1/3 
 

¼ 
C ¼  

  

   

C 
A B  

¼
 ¼ 
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For  the Mark off source shown, calculate the information rate. 
 

             ½     
 

           ½ S ½     
 

      
L  1 

  S 
2 

S 3   R 1
/2 

  
 

        L R    
 

   ½     ¼  ¼     
 

      p1 = ¼  P2 = ½ P3 = ¼    
 

                
 

Solution:  
 

By definition, the average information rate for the source is given by    
 

          
 

R = rs . H bits/sec    ------ (1)     
 

         

Where, rs is the symbol rate of the source      
 

And H is the entropy of the source.       
 

To compute H               
 

Calculate the entropy of each state using,      
 

  n   
1 
           

 

Hi 


 ∑
p

iJ log   bits / sym   ----- (2)     
 

         
 

  j1    
p

ij          
 

For this example,          
 

 3    
1 

          
 

Hi  


 ∑
p

ij log  ; i  1, 2, 3  ------ (3)     
 

      
 

  j1    
p

ij          
 

  Put i = 1               
 

 3                
 


 

H
i 


 ∑ 

p
1 j log p1 j          

 

j  1  
 

= - p11 log p11 – p 12 log p12 – p 13 log p13  
 

Substituting the values, we get 
 

1   1 1   1 
 

H1 = -  x log   -  log  - 0  

   

2 
 

 

2   2   2 
 

= + 1 log (2) +  1 log (2)     
 

 

2 
     

2            
 

        

 H1 = 1 bit / symbol       
 

Put i = 2, in eqn. (2) we get,     
 

3            
 

H2 = - ∑p 2 j log p 2 j       
 

    j  1            
 

i.e., H2 = - p21 log p21  p22 log p22   p23  log p23  
 

Substituting the values given we get, 
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     1     1 
 

1   1 
 

1  1 
 

H2 = -  log  

 

  log   

 log   

 

  

2 

 

4 

 
 

    

4
    4    2   4 

 

 1    1     1         
 

= +   log 4 +   
 log 2 +   log 4        

 

              

 4    2     4         
 

= 
1 

log 2 + 
1 

+ log 4 
           

 

                

               
 

2 2   

 H2 = 1.5 bits/symbol  
 
 

Similarly calculate H3 and it will be  

H3 = 1 bit / symbol 
 
 

With Hi computed you can now compute H, the source entropy, using. 
 

3 
H =

 ∑ Pi   Hi  
i  1 

 

= p1 H1 + p2 H2 + p3 H3 
 

Substituting the values we get,  

1 1 1  
 

H =  x 1 +  x 1.5 +  x 1  
    

4 2 4  
  

1 1.5   1 
= + + 

4 2 4 
 

1 1.5   2.5 
= + = = 1.25 bits / symbol 

2 2 2 

 H = 1.25 bits/symbol 
 

 

Now, using equation (1) we have  

Source information rate = R = rs 1.25  

Taking ‘r s’ as one per second we get 
 

R = 1 x 1.25 = 1.25 bits / sec 
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Review questions: 
 

(1) Explain the terms (i) Self information (ii) Average information (iii) Mutual Information.  

 
(2) Discuss the reason for using logarithmic measure for measuring the amount of information.  

 
(3) Explain the concept of amount of information associated with message. Also explain what 

infinite information is and zero information.  

 
(4) A binary source emitting an independent sequence of 0’s and 1’s with pro babilities p and (1- 

p) respectively. Plot the entropy of the source.  

 
(5) Explain the concept of information, average information, information rate and redundancy as 

referred to information transmission.  

 

(6) Let X represents the outcome of a single roll of a fair dice. What is the entropy of X?  

 
(7) A code is composed of dots and dashes. Assume that the dash is 3 times as long as the dot and 

has one-third the probability of occurrence. (i) Calculate the information in dot and that in a 

dash; (ii) Calculate the average information in dot-dash code; and (iii) Assume that a dot lasts 

for 10 ms and this same time interval is allowed between symbols. Calculate the average rate 

of information transmission.  

 
(8) What do you understand by the term extension of a discrete memory less source? Show that 

the entropy of the nth extension of a DMS is n times the entropy of the original source.  

 

(9) A card is drawn from a deck of playing cards. A) You are informed that the card you draw is 

spade. How much information did you receive in bits? B) How much information did you 

receive if you are told that the card you drew is an ace? C) How much information did you 

receive if you are told that the card you drew is an ace of spades? Is the information content of 

the message “ace of spades” the sum of the information contents of the messages ”spade” and 

“ace”?  

 
(10) A block and white TV picture consists of 525 lines of picture information. Assume that each 

consists of 525 picture elements and that each element can have 256 brightness levels. 
Pictures are repeated the rate of 30/sec. Calculate the average rate of information conveyed by 

a TV set to a viewer.  

 
(11) A zero memory source has a source alphabet S= {S1, S2, S3} with P= {1/2, 1/4, 1/4}. Find 

the entropy of the source. Also determine the entropy of its second extension and verify that H 

(S
2
) = 2H(S).  

 
(12) Show that the entropy is maximum when source transmits symbols with equal probability. 

Plot the entropy of this source versus p (0<p<1).  

 
(13) The output of an information source consists OF 128 symbols, 16 of which occurs with 

probability of 1/32 and remaining 112 occur with a probability of 1/224. The source emits 

1000 symbols/sec. assuming that the symbols are chosen independently; find the rate of 
information of the source.  

 
 
 

  

 
  

 

3  BB 
 

 
 

A 1 AA  

 
 

C   
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Unit - 2: SOURCE CODING 
 
 
 

 

Syllabus: 
 

Encoding of the source output, Shannon’s encoding algorithm. Communication Channels, 
Discrete communication channels, Continuous channels. 

 
 
 
 

 

Text Books:  
 Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 

1996. 
 
 
 
 

 

Reference Books: 

 Digital Communications - Glover and Grant; Pearson Ed. 2nd Ed 2008 
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Unit - 2: SOURCE CODING 
 
2.1 Encoding of the Source Output: 
 
 Need for encoding 
 

Suppose that, M – messages = 2 
N

, which are equally likely to occur. Then recall that average 
information per messages interval in H = N. 
 

Say further that each message is coded into N bits, 
 

 Average information carried by an individual bit is = 
H

  1 bit 
N 

 
If the messages are not equally likely, then ‘H’ will be les s than ‘N’ and each bit will carry 

less than one bit of information. 
 
 Is it possible to improve the situation? 
 

Yes, by using a code in which not all messages are encoded into the same number of bits. The 
more likely a message is, the fewer the number of bits that should be used in its code word. 
 
 Source encoding 
 

Process by which the output of an information source is converted into a binary sequence. 
 

 

Symbol sequence 
Input Source Output 

 
 

emitted by the :   a binary sequence  

 

Encoder 
 

 

information source    
 

    
 

       
 

 

 

  If the encoder operates on blocks of ‘N’ symbols, t he bit rate of the 

encoder is given as  

Produces an average bit rate of GN bits / symbol 
 1

 ∑p(mi ) log p(mi ) 

N i 
 

p(mi ) = Probability of sequence ‘mi’ of ‘N’ symbols from the source, 

Sum is over all sequences ‘m i’ containing ‘N’ symbols.  

GN in a monotonic decreasing function of N and 
 

Lim 

N  GN = H bits / symbol 
 
Performance measuring factor for the encoder  

Coding efficiency: ηc 
 

Definition of ηc = 
 Source inf ormation  rate 

 

     

Average output bit rate of the encoder 
 

    
 

      
 

 ηc = 
H(S)    

 

^      
 

        

  H N    
 

 

Where, GN = – 
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2.2 Shannon’s Encoding Algorithm: 
 
  Formulation of  the design of the source encoder 
 

Can be formulated as follows: 
 
One of ‘q’ 

possible 

messages 
 

INPUT SourceOUTPUT 

A message encoder 
 

 

N-symbols Replaces the input message 

symbols by a sequence of  
binary digits 

 
 
 

 
A unique binary 

code word ‘c i’ of 

length ‘n i’ bits for 

the message ‘m i’ 

 

 

‘q’ messages : m 1, m2, …..m  i, …….., m q 

Probs. of messages :  p1, p2, ..…..p  i, ……..., p q 

ni : an integer  
 
 The objective of the designer 
 

^  
To find ‘n i’ and ‘c i’ for i = 1, 2, ...., q such that the average number of bits per symbol H N 

used in the coding scheme is as close to GN as possible. 
 

 ^     
1 

q   
 

Where, H N = ∑
n

 i 

p
i  

 
 

      
N

 i 1   
 

  

1 
  q 

1 
 

 

and GN =  
 ∑pi  log  

 

  

pi 

 

  
N

 i 1 
 

i.e., the objective is to have 
 

          
 

^ 
GN 

  

as closely as possible 
 

H N   
 

 

 

 The algorithm proposed by Shannon and Fano  

Step 1: Messages for a given block size (N) m1, m2, ....... mq are to be arranged in decreasing order of 

probability.  

Step 2: The number of ‘n i’ (an integer) assigned to message m i is bounded by 

 log2 
1 
 n i   1  log 2 

1   
 

 

pi 
 

 

  pi  
 

Step 3: 

   

The code word is generated from the binary fraction expansion of ‘Fi’ defined as 
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i  1 

Fi = ∑p k  , with F1 taken to be zero.  
k 1 

 

Step 4: Choose ‘n i’ bits in the expansion of step – (3)  

Say, i = 2, then if ni as per step (2) is = 3  and  

If the Fi as per stop (3) is 0.0011011 
 

Then step (4) says that the code word is: 001 for message (2) 
 

 

With similar comments for other messages of the source. 
 
 

The codeword for the message ‘mi’ is the binary fraction expansion of Fi upto ‘ ni’ bits. 
 

 

i.e., Ci = (Fi)binary, ni bits 
 
 
 

 

Step 5: Design of the encoder can be completed by repeating the above steps for all the messages of 
block length chosen. 

 
 Illustrative Example 


Design of source encoder for the information source given, 
 

 ¼   
 

A  1 
C 

2   B3 
 

 

C /4  3
/4 ¼ 

 
 

  
 

p1 = ½  P2 = ½  
 

 
 
 

Compare the average output bit rate and efficiency of the coder for N = 1, 2 & 3. 
 
Solution: 
 

The value of ‘N’ is to be specified. 
 
Case – I: Say N = 3  Block size 
 
Step 1: Write the tree diagram and get the symbol sequence of length = 3. 
 

Tree diagram for illustrative example – (1) of session (3) 
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¾ 

 A ¾ 1 AAA  
 

     

 

A 
 1 

2 AAC 
 

 

                          C  ¼                      
 

            A  1  
C 

        C  ¼    1 ACC                     
 

                     ¼  2   
3
/4 

   

2 ACB 

                    
 

                         

B 
                        

 

         
¾                                          

 

 

½  1 
  

 

                        
A 

 ¾    
1 CCA 

                    
 

           

C 
          

¼ 
 

1 
                         

                                                
 

      

¼ 
    

C 
    

C 
 

¼ 
 

2 CCC 
                    

 

                                          
 

              2  
B 

       
2 

C  ¼    1 CBC                     
 

                    
¾ 
   

B 
 3

/4 
   

2 CBB 
                    

 

     
 

    
 

 

¾ 

 A ¾ 1 CAA  
 

     

 

A 
 1 

2 CAC 
 

 

                          C  ¼                      
 

            C  1  
C 

        C  ¼    1 CCC                     
 

                     ¼  2   
3
/4 

   

2 CCB 

                    
 

                         

B 
                        

 

         ¼                                         
 

 

½  2 
  

 

                        
A 

 ¾    
1 BCA 

                    
 

           

B 
          

¼ 
 

1 
                         

                                                
 

      

¾ 
      

C 
    

C 
 

¼ 
 

2 BCC 
                    

 

                                            
 

              2  
B 

       
2 

C  ¼    1 BBC                     
 

                    
¾ 
   

B 

 
3
/4 

   

2 BBB 

                    
 

     
 

    
 

From the previous session we know that the source emits fifteen (15) distinct three symbol messages. 
 

They are listed below:                                                     
 

                                           
 

Messages AAA AAC  ACC  ACB BBB BBC  BCC  BCA  CCA  CCB  CCC  CBC  CAC CBB 
 

 CAA 
 

                                                     
 

Probability   27 9  3  9    27  9   3   9    3   3    2    3  3  9   9  
 

 

 

  

 

    

 

 

 

   

 

   

  

  

 

 

 

   

 

  

 

   

 

   

 

  

 

  

 

  

 

  

 

 

       

128 128 
    

128 128 128 
 

128 128 
 

128 
 

128 128 128 128 
 

  128128     128                      
 

                              
 

Step 2: Arrange the messages ‘m i’ in decreasing order of probability.                      
 

Messages AAA BBB  CAA  CBB   BCA  BBC AAC  ACB  CBC  CAC   CCB  CCA BCC  ACC 
 

mi CCC 
 

                                                    

Probability   27 27 9  9   9     9   9   9    3   3    3    3  3  3   2   
 

pi 
 

  
 

    
 

 
 

   
 

   
  

  
 

 
 

   
 

  
 

   
 

   
 

  
 

  
 

  
  

   
 

 

                                     

 128128  128  128   128  128   128   128    128   128    128    128  128  128   128 
 

                          

Step 3: Compute the number of bits to be assigned to a message ‘m i’ using.                 
 

   Log2   1 
 n i  1  log 2 

1 
; i = 1, 2, ……. 15 

                              
 

      

pi 
                              

 

pi  
 

   Say i = 1, then bound on ‘n i’ is                                       
 

     128         128                                        
 

   log      

  n1   1  log                                           
 

                                                  
 

2

7 27 
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i.e., 2.245 < n1 < 3.245 
 
 

Recall ‘n i’ has to be an integer 
 

 n1 can be taken 

as, n1 = 3 
 
 

Step 4: Generate the codeword using the binary fraction expansion of Fi defined as 
 

i  1 

Fi = ∑p k  ; with F1 = 0  
k 1 

 

Say i = 2, i.e., the second message, then calculate n2 you should get it as 3 bits. 
 

2  1 1  

27 
  

27 
 

 

Next, calculate F2 =  ∑p k 


 ∑
p

 k  . Get the binary fraction expansion of  . You  

 

128 
 

k 1 k 1 128   
  

get it as : 0.0011011  

Step 5: Since ni = 3, truncate this exploration to 3 – bits. 
 

 The codeword is: 001 
 

 

Step 6: Repeat the above steps and complete the design of the encoder for other messages listed above. 

 

The following table may be constructed 

 

Message 
pi 

 
Fi ni 

Binary expansion of Code   word  
 

mi 
 

Fi ci 
 

 

       
 

AAA 27  0 3 .00000 000  
 

 

 

  

 

      

 

128 
      

        
 

BBB 27  27/128 3 .001101 001  
 

 

  

  

 

128 
 

        
 

  9       
 

CAA 
 

  

 

54/128 4 0110110 0110 
  

128 
  

   
 

  9       
 

 

 

  

 

      

 

128 
      

CBB   63/128 4 0111111 0111  
 

  9       
 

 

 

  

 

      

 

128 
      

BCA 
  

72/128 4 .1001100 1001 
 

 

 9   
 

       

 

 

  

 

      

 

128 
      

        
 

BBC  9  81/128 4 1010001 1010  
 

 

 

  

 

      

 

128 
      

        
 

AAC  9  90/128 4 1011010 1011  
 

 

  

  

 

128 
 

        
 

  3       
 

ACB 
 

  

 

99/128 4 1100011 1100 
  

128 
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CBC  3  108/128 6 110110 110110  
 

 

  

  

 

128 
 

        
 

  3       
 

CAC 
 

  

 

111/128 6 1101111 110111 
  

128 
  

   
 

  3       
 

 

 

  

 

      

 

128 
      

CCB   114/128 6 1110010 111001  
 

 3  

 
 

      
 

 

 

  

 

      

 

128 
      

CCA 
  

117/128 6 1110101 111010 
 

 

 3   
 

       

 

 

  

 

      

 

128 
      

        
 

BCC  2   120/128 6 1111000 111100  
 

 
 

   
 

     
 

          

  128      
 

ACC      123/128 6 1111011 111101  
 

CCC      126/128 6 1111110 111111  
 

           
 

 

 

  the average number of bits per symbol used by the encoder  

Average number of bits = ∑n i  pi 
 
Substituting the values from the table we 

get, Average Number of bits = 3.89 
 

^ 
 Average Number of bits per symbol = H N 
 
Here N = 3, 
 

^ 
3.89 

    
 

  H3   = 1.3 bits / symbol  

  

  3     
 

State entropy is given by 
 

n  1   
 

Hi = ∑pij 
  

 

    bits / symbol  

log   

j 1  
p

ij   
 

 
 

 

 ∑
n

 i 

n
 

i N 

Here number of states the source can be in are two 

i.e., n = 2 
 

2 
 

  1         
 

Hi = ∑pij 
         

 

             
 

log  p
ij 

       
 

j 1          
 

Say i = 1, then entropy of state – (1) is    
 

2   1    1  1   

Hi = ∑pij 
     

 

       

 p11 log  

 p12 
   

 

log       p
11 

log 
 

j 1    
p

1 j    
p

12 
 

Substituting the values known we get,    
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 3 1 

 

1  1  
 

H1 = 

 

x log 

  

log 

   
 

4 3 / 4 4 1/ 4  
 

= 
3

 x log 
4

  
1

 log 4 
4 3    4   

 H1 = 0.8113  
 
 

Similarly we can compute, H2 as 
 

2      

1 
           

1 
 

H2 = ∑ p21 log 
    

 p21 
 
 p22 log  

 p
21 

  p
22 

 

 j 1              
 

Substituting we get,            
 

H2 = 
1    1  

 
3   1   

 

 

x log           

log   

 

 

4 1/ 4 4 

   
 

          3 / 4   
 

1  
x log 4  

3     4      
 

=        log   

 

    
 

              

4       4     3      
 

 

H2 = 0.8113 

 

Entropy of the source by definition is 

 
n 

H = ∑pi  Hi ;  
j 1 

 
 

Pi = Probability that the source is in the i
th

 state. 

 
2 

H = ∑ pi  H i ;  = p1H1 + p2H2  
i 1 

 
 

Substituting the values, we get, 

 

H = ½ x 0.8113 + ½ x 0.8113 = 0.8113 

 

 H = 0.8113 bits / sym. 
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 What is the efficiency of the encoder? 


By definition we have 
 

ηc =   H  x 100  H x 100  0.8113 x 100  62.4%  

  

^   

^   

1.3 
  

 

  H 2 
  H 3 

  
 

        
 

     

  ηc for   N = 3 is,  62.4%  
 

          
 

 

Case – II 
 
Say N = 2 

 
The number of messages of length ‘two’ and their probabilities (obtai ned from the tree diagram) 

can be listed as shown in the table. 
 
Given below 

 
N = 2 

Message pi ni ci 

AA 9/32 2 00 

BB 9/32 2 01 

AC 3/32 4 1001 

CB 3/32 4 1010 

BC 3/32 4 1100 

CA 3/32 4 1101 

CC 2/32 4 1111 
 

^ 
Calculate H N   and verify that it is 1.44 bits / sym. 

 
 Encoder efficiency for this case is 

 
H 

ηc = ^ x100 H 

N 
 
Substituting the values we get,  

ηc = 56.34% 
 

 

Case – III: N = 1    

Proceeding on the same lines you would see that   

N = 1      

Message  pi ni ci  

A  3/8 2 00  

B  3/8 2 01  

C  1/4 2 11  
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^    

 H1  = 2 bits / symbol and   
     

 ηc = 40.56%    
     

  Conclusion for the above example   

   ^  
 We note that the average output bit rate of the encoder   H N     decreases as ‘N’ increases and 
      
hence the efficiency of the encoder increases as ‘N’ increases. 
 

 

Operation of the Source Encoder Designed: 
 
I. Consider a symbol string ACBBCAAACBBB at the encoder input. If the encoder uses a 

block size of 3, find the output of the encoder. 
 

 ¼      
 

A  1 
C 

2   B3 
   

OUTPUT 
 

C /4 
 SOURCE  

3
/4 ¼ 

   
 

   ENCODER  
 

p1 = ½  P2 = ½     
 

       
  

INFORMN. SOURCE 

 

Recall from the outcome of session (5) that for the source given possible three symbol 
sequences and their corresponding code words are given by –  

Message 
ni 

Codeword 
 

mi ci 
 

 
 

AAA 3 000 
 

BBB 3 001 
 

CAA 4 0110 
 

CBB 4 0111 
 

BCA 4 1001 
 

BBC 4 1010 
 

AAC   
 

ACB 4 1100 
 

CBC 6 110110 
 

CAC 6 110111 
 

CCB 6 111001 
 

CCA 6 111010 
 

BCC 6 111100 
 

ACC 6 111101 
 

 
 
 
 
 
 
 
 
 
 
 

 
Determination of the 

code words and their 

size as illustrated in 

the previous session 
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CCC 6 111111 
 

Output of the encoder can be obtained by replacing successive groups of three input symbols by 

the code words shown in the table. Input symbol string is 
 

ACB 

 

BCA 

 

AAC 

  

BBB 

    

       
 

        

123  123  123   {   

 Encoded version of the symbol string 
 

1100  1001  1011   011    

     

 

 

II. If the encoder operates on two symbols at a time what is the output of the encoder for the 

same symbol string? 
 

Again recall from the previous session that for the source given, different two-symbol sequences 
and their encoded bits are given by 

 

 

N = 2 

Message No. of bits ci 

mi ni  

AA 2 00 

BB 2 01 

AC 4 1001 

CB 4 1010 

BC 4 1100 

CA 4 1101 

CC 4 1111 
 

 

For this case, the symbol string will be encoded as – 

 

AC  BB CA  AA CB BB  
 

{ { { { { { 
 Encoded message 

 

100101110100    1010    01 
 

 

 

DECODING 
 
 How is decoding accomplished? 

 
By starting at the left-most bit and making groups of bits with the codewords listed in the 

table. 
 
Case – I: N = 3 

 
i) Take the first 3 – bit group viz 110 why?  

 
ii) Check for a matching word in the table.  

 
iii) If no match is obtained, then try the first 4-bit group 1100 and again check for the matching 

word.  
 

iv) On matching decode the group.  
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NOTE: For this example, step (ii) is not satisfied and with step (iii) a match is found and the decoding 

results in ACB. 
 
Repeat this procedure beginning with the fifth bit to decode the remaining symbol groups. 

Symbol string would be ACB BCA AAC BCA 

 

 Conclusion from the above example with regard to decoding 


It is clear that the decoding can be done easily by knowing the codeword lengths apriori if no 
errors occur in the bit string in the transmission process. 


 The effect of bit errors in transmission 


Leads to serious decoding problems. 
 
Example: For the case of N = 3, if the bit string, 1100100110111001 was received at the decoder 

input with one bit error as 
 
1101100110111001 
 
What then is the decoded message? 
 

Solution: Received bit string is  

1 1 0 1 1 0  0 1 1 0  1 1 1 0 1  

Error bit  

CBCCAACCB ----- (1) 

 

For the errorless bit string you have already seen that the decoded symbol string is  

ACB BCA AAC BCA ----- (2) 
   

(1) and (2) reveal the decoding problem with bit error. 
 

 

Illustrative examples on source encoding 
 
1. A source emits independent sequences of symbols from a source alphabet containing five 

symbols with probabilities 0.4, 0.2, 0.2, 0.1 and 0.1.  
 

i) Compute the entropy of  the source  
 

ii) Design a source encoder with a block size of two.   

Solution: Source alphabet  = (s1, s2, s3, s4, s5)  

Probs. of symbols   = p1, p2, p3, p4, p5 
 

= 0.4, 0.2, 0.2, 0.1, 0.1 
 

5 

(i) Entropy of the source = H =  ∑pi  log pi  bits / symbol  
i  1 

 
Substituting we get,  

H = - [p1 log p1 + p2 log p2 + p3 log p3 + p4 log p4 + p5 log p5 ] 
 

= - [0.4 log 0.4 + 0.2 log 0.2 + 0.2 log 0.2 + 0.1 log 0.1 + 0.1 log 0.1] 
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H = 2.12 bits/symbol 
 

(ii) Some encoder with N = 2  
 

Different two symbol sequences for the source are:  

(s1s1) AA ( ) BB ( ) CC ( ) DD ( ) EE 

(s1s2) AB ( ) BC ( ) CD ( ) DE ( ) ED 

(s1s3) AC ( ) BD ( ) CE ( ) DC ( ) EC   A total of 25 messages 

(s1s4) AD ( ) BE ( ) CB ( ) DB ( ) EB 

(s1s5) AE ( ) BA ( ) CA ( ) DA ( ) EA  

Arrange the messages in decreasing order of probability and determine the number of bits ‘n i’ as 

explained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
^ 

Calculate H1 
 

^ 

  

Messages 
Proby. No. of bits 

 

pi ni  

 
 

AA 0.16 3 
 

   
 

AB 0.08  
 

AC 0.08  
 

BC 0.08 4 
 

BA 0.08  
 

CA 0.08  
 

... 0.04  
 

... 0.04  
 

... 0.04  
 

... 0.04 5 
 

... 0.04  
 

... 0.04  
 

... 0.04  
 

... 0.02  
 

... 0.02  
 

... 0.02  
 

... 0.02 
6  

... 0.02  

 
 

... 0.02  
 

... 0.02  
 

... 0.02  
 

... 0.01  
 

... 0.01 
7  

... 0.01  

 
 

... 0.01  
 

 
 
 
= 

Substituting, H1  = 2.36 bits/symbol 
 

 

2. A technique used in constructing a source encoder consists of arranging the messages in 

decreasing order of probability and dividing the message into two almost equally probable 
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groups. The messages in the first group are given the bit ‘O’ and the messages in the second 

group are given the bit ‘1’. The procedure is now applied again for each group separately, and 

continued until no further division is possible. Using this algorithm, find the code words for six 

messages occurring with probabilities, 1/24, 1/12, 1/24, 1/6, 1/3, 1/3 
 

 

Solution: (1) Arrange in decreasing order of probability 
 

 

m5 1/3 0 0     
 

m6 1/3 0 1   1
st
 division 

 

m4 1/6 1 0   2
nd

 division 
 

m2 1/12 1 1 0  


 3rd division  

      
 

m1 1/24 1 1 1 0 
4

th
division  

      
 

m3 1/24 1 1 1 1   
 

 
 

 Code words are 
 
 

m1 = 1110 

m2 = 110 

m3 = 1111 

m4 = 10 

m5 = 00 

m6 = 01 

 
 

Example (3) 
 

a) For the source shown, design a source encoding scheme using block size of two 

symbols and variable length code words  
 

^ 
b) Calculate H 2   used by the encoder  

 
c) If the source is emitting symbols at a rate of 1000 symbols per second, compute the 

output bit rate of the encoder.  

 

  ½    
 

 ½ S ½   
 

L  1 
S 

2 
S 3   R 1

/2 
 

L R  
 

½ ¼  ¼   
 

p1 = ¼  P2 = ½  P3 = ¼  
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Solution (a) 
 
1.  The tree diagram for the source is 

 

   ½ 1 LL (1/16) 
 

  1  
2 LS (1/16) 

 

   ½  

       

¼  1 
¼      

 

      
 

 C  ¼ 1 
SL (1/32) 

 

 ¼   
2  

  

2 ½ SS (1/16) 
 

  
3  

   
¼ SR (1/32)      

 

   ½ 1 LL (1/16) 
 

  1 
½ 

2 LS (1/16)      
 

   

1 
  

 

 
¼ 

 ¼ SL (1/16)  
  

2 
 ½

  2 2 
   

 

½ ½ SS (1/8)  

  

3 
 

 

¾ 
 ¼ 

SR (1/16) 
 

  ½ 2  

  

2 
    

  

½ 3 RS (1/8)  

   
 

      
 

   ¼ 1 SL (1/32) 
 

  2 ½ 
2 SS (1/16) 

 

  

3 
  

 

   

SR (1/32) 
 

   ¼  

 

½ 
  

 

¼  3 
     

 

      
 

 C  ½ 2 RS (1/16) 
 

 ½      
 

  3  
3 RR (1/16)     

½  

      

      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LL 
 
LS 
 
SL 
 
SS 
 
SR 
 
RS 
 
RR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Different  
Messages  
of Length  
Two 

 
2. Note, there are seven messages of length (2).  They are SS, LL, LS, SL, SR, RS & RR.  

 
3. Compute the message probabilities and arrange in descending order.  

 

4. Compute ni, Fi. Fi (in binary) and ci as explained earlier and tabulate the results, with usual 

notations.   

Message 
pi ni Fi Fi (binary) ci 

 

mi 
 

     
 

SS 1/4 2 0 .0000 00 
 

LL 1/8 3 1/4 .0100 010 
 

LS 1/8 3 3/8 .0110 011 
 

SL 1/8 3 4/8 .1000 100 
 

SR 1/8 3 5/8 .1010 101 
 

RS 1/8 3 6/8 .1100 110 
 

RR 1/8 3 7/8 .1110 111 
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1 

7
      

 

G2 = ∑ 
p

i 
log

 2 pi = 1.375 bits/symbol  

  

2 i 1      
 

^  
1 

 
7
   

 

(b) H 2 =  ∑ 
p

i 
n

i = 1.375 bits/symbol  

   

  2  i 1   
 

  ^      
1 

 
 

Recall, H N ≤ GN + ; Here N = 2 
 

N  

         
 

^      
1 

   
 

 H 2 ≤ G2 +    
 

    
 

     2    
  

(c) Rate = 1375 bits/sec. 
 

 

2.3 SOURCE ENCODER DESIGN AND COMMUNICATION CHANNELS 
 
 The schematic of a practical communication system is shown. 

 
 
 
 
 
 
 
 
 
 

b 

 
Data Communication Channel (Discrete) 

 
   

Coding Channel (Discrete) 
      

 

         
 

   

Modulation Channel (Analog) 
 

 

  
 

      
 

       
 

      
Noise 

      
 

    Electrical        
 

 

c 
 

d 
Commun- 

e f 
 

g 
 

h 
 

    
 

Channel Channel ication 
Demodulator 

Channel 
 

Encoder  Encoder  channel  Σ    Decoder  
 

          

    OR         
 

             

    Transmissi         
 

    on medium         
 

 
Transmitter Physical 

 

channel Receiver 
 

 
 

     
 

 

 

Fig. 1: BINARY COMMN. CHANNEL CHARACTERISATION 
 

 

 ‘Communication Channel’ 
 

Communication Channel carries different meanings and characterizations depending on its 
terminal points and functionality. 
 

 

(i) Portion between points c & g: 

Referred to as coding channel  
 

Accepts a sequence of symbols at its input and produces a sequence of symbols at its 
output.  

 

Completely characterized by a set of transition probabilities pij. These probabilities will 

depend on the parameters of – (1) The modulator, (2) Transmiss ion media, (3) Noise, and 
(4) Demodulator 
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A discrete channel 
 

 

(ii) Portion between points d and f:  
 

Provides electrical connection between the source and the destination.  
 

The input to and the output of this channel are analog electrical waveforms. 

Referred to as ‘continuous’ or modulation channel or simply analog 

channel. Are subject to several varieties of impairments – 
 

Due to amplitude and frequency response variations of the channel within the 
passband. 

 
Due to variation of channel characteristics with time. 

Non-linearities in the channel. 
 

Channel can also corrupt the signal statistically due to various types of additive and 
multiplicative noise. 

 

 

2.4 Mathematical Model for Discrete Communication Channel: 
 

Channel between points c & g of Fig. – (1) 
 
 The input to the channel? 


A symbol belonging to an alphabet of ‘M’ symbols in the general case is the input to the channel. 




 he output of the channel 


A symbol belonging to the same alphabet of ‘M’ input symbols is the output of the channel. 




 Is the output symbol in a symbol interval same as the input symbol during the same symbol 
interval? 


The discrete channel is completely modeled by a set of probabilities – 

pt Probability that the input to the channel is the i
th

 symbol of the alphabet. 
 

 i  
 

  (i = 1, 2, …………. M) 
 

  and 
 

p 
ij Probability that the i

th
 symbol is received as the j

th
 symbol of the alphabet at the output of 

 

    
the channel. 

 

 

 Discrete M-ary channel 


If a channel is designed to transmit and receive one of ‘M’ possibl e symbols, it is called a 
discrete M-ary channel. 





 discrete binary channel and the statistical model of a binary channel 
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Shown in Fig. – (2). 
 

O P00 O 

 

P10 
Transmitted 

Received 
digit X 

digit X 
P01 

 

1 p11 1 

 
 
 
 
 
 
 
 

pij = p(Y = j / X=i)  

po
t  = p(X = o); p1

t  P(X = 1) 
 

po
r = p(Y = o); p1

r P(Y = 1) 
poo + po1 = 1 ; p11 + p10 = 1 

 

Fig. – (2) 
 

 

 Its features 
 

X & Y: random variables – binary valued 
 

Input nodes are connected to the output nodes by four paths. 
 

(i) Path on top of graph : Represents an input ‘O’ appearing correctly 

as ‘O’ as the channel output. 

 

(ii) Path at bottom of graph :  

(iii) Diogonal path from 0 to 1 :   Represents an input bit O appearing 

   incorrectly as 1 at the channel output 

   (due to noise) 

(iv) Diagonal path from 1 to 0 : Similar comments 
 

 

Errors occur in a random fashion and the occurrence of errors can be statistically modelled 

by assigning probabilities to the paths shown in figure (2). 
 

 

 A memory less channel: 


If the occurrence of an error during a bit interval does not affect the behaviour of the system 
during other bit intervals. 


Probability of an error can be evaluated as 

p(error) = Pe = P (X ≠ Y) = P (X = 0, Y = 1) + P (X = 1, Y = 0)  

Pe =  P (X = 0) . P (Y = 1 / X = 0) + P (X = 1), P (Y = 0 / X= 1) 
 

Can also be written as, 

 

 Pe = po
t
  p01 + p1

t
  p10  ------ (1) 

    

 We also have from the model  
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po
r
  po

t
 p00   p1

t
  . p10 , and 

----- (2)  

p1
r
  po

t
 p01  p1

t
 p11 

 
 

  
 

   
 

 

 Binary symmetric channel (BSC) 

If, p00 = p11 = p (say), then the channel is called a BSC. 
 

 

  Parameters needed to characterize a BSC  
 

  Model of an M-ary DMC.  
 

1 
p11 

1   
 

 p12  
 

2   
 

  2 
 

 
 
 
 
 
 
 
 
 

pi
t 

 
p

r
j 

 
p

ij 

 
 
 
 
 
 
 
 
 
= p(X = i)  
 
= p(Y = j)  
 
= p(Y = j / X = i)  

 

INPUT X OUTPUT Y  

 
 

 j 
 

i pij 
 

  

 piM 
 

M M 
 

 Fig. –  (3) 
 

 

 

This can be analysed on the same lines presented above for a binary channel. 
 

M  

p
r
j   ∑pi

t
  pij ----- (3) 

i 1  

 

 

 The p(error) for the M-ary channel 


Generalising equation (1) above, we have 

M  
M   

 

  

  

P(error)  Pe   ∑pi
t ∑

p
ij ----- (4) 

 

i 1  
j 1   

 

   
 

  j  i   
 

 
 

 In a DMC how many statistical processes are involved and which are they? 
 

Two, (i) Input to the channel and 
 

(ii) Noise  
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 Definition of the different entropies for the DMC. 
 

i) Entropy of  INPUT X: H(X).   
 

      
 

 M 
pi

t
  

   
 

 HX  ∑pi
t
  log bits / symbol  ----- (5) 

 

 i  1     
 

     

ii) Entropy of OUTPUT  Y:  H(Y)   
 

      
 

 M 

pi
r
  

   
 

 HY  ∑pi
r
  log bits / symbol ----- (6) 

 

i  1  

 

 

 

iii) Conditional entropy: H(X/Y)  
 

M M   

HX / Y  ∑ ∑P (X  i, Y  j) log p (X i / Y  j) bits/symbol - (7) 
i  1 j  1  

    

 

 

iv) Joint entropy: H(X,Y)  
 

M M  

HX, Y  ∑ ∑P (X  i, Y  j) log p (X  i, Y  j) bits/symbol - (8) 
i  1 i  1  

 

 

v) Conditional entropy: H(Y/X)  
 

M M  

H (Y/X)  ∑ ∑P (X  i, Y  j) log p (Y  j / X  i) bits/symbol - (9) 
i  1 i  1  

   

 

 

Representation of the conditional entropy 
 
 H(X/Y) represents how uncertain we are of the channel input ‘x’, on the average, when we know 

the channel output ‘Y’. 

 
 
Similar comments apply to H(Y/X) 

vi) Joint Entropy H(X, Y)  H(X)  H(Y/X)  H(Y)  H(X/Y) - (10) 
    

 
ENTROPIES PERTAINING TO DMC 
 
 
  To prove the relation for H(X Y) 
 

By definition, we have, 
 

M M 

H(XY) =  ∑ ∑p ( i, j) log p ( i, j) 
i j 
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i associated with variable X, white j with variable Y. 
 

H(XY) =  ∑ ∑p ( i) p ( j / i) log p ( i) p ( j / i)   
 ij  

 

 
∑ ∑p ( i) p ( j / i) log p ( i)  

 
 

=  ∑ ∑p ( i) p ( j / i) log p ( i) 
 

 ij  
 

 
Say, ‘i’ is held constant in the first summation of the first t erm on RHS, then we can write 

H(XY) as 
 

 
∑p ( i)1 log p ( i)  ∑ ∑p ( ij) 

 
 

H(XY) =  log p ( j / i) 
 

   
 

 
H(XY)  H(X)  H(Y / X) 

 
Hence the proof. 

 
 
 

1.  For the discrete channel model shown, find, the probability of error. 

 

0 p 0 
 
 
 

X Y 

 

1 p 
1

 Received 
 

Transmitted  digit  

digit 
  

  
 

 

Since the channel is symmetric, 
p(1, 0) = p(0, 1) = (1 - p) 

 
Proby. Of error means, situation 
when X ≠ Y 

 

P(error) = Pe = P(X ≠ Y) = P(X = 0, Y = 1) + P (X = 1, Y = 0) 
 

= P(X = 0) . P(Y = 1 / X = 0) + P(X = 1) . P(Y = 0 / X = 1) 
 

 

Assuming that 0 & 1 are equally likely to occur 
 

P(error) = 1 x (1 – p) + 1 (1 – p) = 1 - p + 1 - p 
 

 

2 2 
    

2   2 2 2 
  

 P(error) = (1 – p) 
 
 
 
 
 
 
 

 

2.  A binary channel has the following noise characteristics: 
 
 
 
 
  



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 50 

 

  
 
 

 

P(Y/X) 
 Y 

 

   
 

0 
 

1 
 

   
 

     
 

X 
0 2/3  1/3 

 

    
 

1 1/3 
 

2/3 
 

  
 

     
 

If the input symbols are transmitted with probabilities ¾ & ¼ respectively, find H(X), H(Y), 

H(XY), H(Y/X). 
 
Solution: 
 

Given = P(X = 0) = ¾ and P(Y = 1) ¼      
 

 H(X) =  ∑p i log pi  3 log 2 
4  1 log 2  4  0.811278 bits / symbol  

 

3 
 

 

i  4   4  
  

Compute the probability of the output symbols. 
 

 

Channel model is- 
 

x1 y1 
 
 
 
 
 
 
 

x2 y2  

p(Y = Y1) = p(X = X1, Y = Y1) +  p(X = X2, Y = Y1) ----- (1) 

To evaluate this construct the p(XY) matrix using.  
 

                          y1  y 2   
 

      

 2 
  

3 
  

1 
  

3 
  

1 
 

1 
   

 

      .   .  x1  
  

 
 

 

      

 

             

 

        
 

      3   4 3  4  

 2    4  
 

      

 

   

 

     
 

                      

  
       

 
 

 

P(XY) = p(X) . p(Y/X) = 
                

 

       

----- (2)  

                
 

       
 

 

      

 1 
   

1 
 

2 
  

1 
 

 

 

1 
 

1 
  

 

      

. 

 

. 

  
 

  
 

 
 

      

 

  

 

x
 2 

   
 

     

 

          

 

       

 

  

     

3 4 
 

3 
   

12 
 

6 
  

 

             4       
 

                                    
 

 P(Y = Y1) = 1   1  7    -- Sum of first column of matrix (2)   

 

12 
      

2    12                        
 

Similarly P(Y2) = 5   sum of 2
nd

 column of P(XY)       
 

         

12                                 
 

Construct P(X/Y) matrix using                         
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P(XY) = p(Y) . p(X/Y) i.e., p(X/Y) = 
p(XY)

 p(Y) 
 

 

 X1  
 

 pX 1Y1  
 

 

 

 

 

       

        

 p 
Y1 

   

pY1  
  

 

          
 

    6 3 
 

    

 

     

  

 

    
7 

 
5  

 p(Y/X) =   
 

 

      
 

    
1
  2 

 

            
 

    7  5 
 

 

1  
2 
7  
12 

 

 

 
12

  
6

  and so on 

14    7 
 
 
 

 

-----(3) 

= ?  

H(Y) = ∑pi log  1  7   log 12   5 log 12  0.979868  bits/sym.  
              

 

  i        pi 12         7    12 5  
 

H(XY) = ∑ ∑p(XY) log 
    1                 

 

                       

p(XY) 
             

 

   i  j                         
 

= 1 log 2  1  log 4  1 log12  1   log 6  

       

6 
 

2     4       12                     
 

 H(XY) = 1.729573 bits/sym.              
 

H(X/Y) = ∑ ∑p(XY) log 
   1                 

 

                      

  
p(X / Y) 

             
 

                                       
 

= 1 log 7  1  log 5   1    log 7  1 log 5 = 1.562  

              

2 6   4  3 12      6  2   
 

H(X/Y) = ∑ ∑p(XY) log 
  1                 

 

                     

 
p(Y / X) 

             
 

                                       
 

= 1 log 3  1  log 3  1  log 3  1 log 3   

       

2 2   4      12       6    2    
 

 
 

3. The joint probability matrix for a channel is given below. Compute H(X), H(Y), H(XY), 

H(X/Y) & H(Y/X)  
 

 0.05 0 0.2 0.05 
 

  
0 0.1 0.1 0 

 
 

P(XY) =    

    
 

 0 0 0.2 0.1  

 

 
 

  

0.05 0.05 0 0.1 
 

 

   
 

 

 

Solution: 
 

Row sum of P(XY) gives the row matrix P(X) 
 

 P(X) = [0.3, 0.2, 0.3, 0.2] 
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Columns sum of P(XY) matrix gives the row matrix P(Y) 
 

 P(Y) = [0.1, 0.15, 0.5, 0.25] 
 

 

Get the conditional probability matrix P(Y/X) 
 

1 
0 

2  1 
 

 

     

 

 

6 3 6 
 

    

 
   

 
 

 

 
1 

 
1 

  
 

 
0 0 

 
 

 2 2  

 

   
 

P(Y/X) =     
2 2 

 
 

 0 0  
 

     

5 
   

      5 
 

 1 1   2   

 0  
 

       

 

3 
   

2    5 
 

 

 

Get the condition probability matrix P(X/Y) 
 

1 
0 

 2  1 
 

 

 

 

    

 

 

2 5 5 
 

    

 
   

 
 

 

 
2 

 
1 

  
 

 
0 0 

 
 

 3 5  

 

   
 

 P(X/Y) =     
2 2 

 
 

 0 0   
 

 

     

5 
   

      5 
 

 
1 1 

   
2 

 
 

 
 0  

 

       

 

3 
    

2     5 
 

 

 

Now compute the various entropies required using their defining equations.  

 H(X) = ∑pX.log 1           1        1 
 

(i)      2  0.3 log   

  2  0.2 log  

 

 

 

pX 
    

  i            0.3        0.2 
 

  H (X) = 1.9705 bits / symbol                    
 

  H(Y)  ∑pY.log  1    0.1 log 1   0.15 log 1     
 

 

pY 
           

(ii)  j         0.1     0.15     
 

   

1 
         

1 
               

   0.5 log   0.25 log                 
 

                       

   0.5    0.25              
 

                      

   H (Y) = 1.74273 bits / symbol                   
 

           1                     
 

(iii) H(XY) = ∑∑p(XY) log 
                    

 

p(XY)                  
 

                              

   1         1       1   
 

 

  4  0.05 log   

  4   0.1 log    

  2 0.2  log  

 

 

           

   0.05        0.1       0.2  
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  H(XY) = 3.12192 
 

 1  
 

(iv) H(X/Y) = ∑∑p(XY) log 
  

 

p(X / Y)  

   

 Substituting the values, we get. 
 

  H(X/Y) = 4.95 bits / symbol 
 

 1  
 

(v) H(Y/X) = ∑∑p(XY) log 
  

 

p(Y / X)  

   

 Substituting the values, we get. 
  

 H(Y/X) = 1.4001 bits / symbol  
 

 

4. Consider the channel represented by the statistical model shown. Write the channel matrix 

and compute H(Y/X).  
 

1
/3           Y1  

X
1 1/6 

  1 /3 Y2 
 

     

INPUT   
1
/6 OUTPUT 

 

  
1
/6 Y3  

   1
/3 

 

 
X2 

  
 

 1
/6 

 
 

   
 

  
1
/3 Y4 

 

 
For the channel write the conditional probability matrix P(Y/X). 
 

 

 y1 y 2 y 3 y 4  
 

x1 
1 1  1    1 

 

 

                

 

 

3 
 

3 
 

6 
  

6 
 

 

P(Y/X) =  
     

 
 

                
 

                   
 

  1   1  1  1   

x 2 
 

    

 
 

                 

    

6 
 

3 
      

6     3 
 

 
 

NOTE: 2
nd

 row of P(Y/X) is 1
st

 row written in reverse order. If this is the situation, then channel is 
called a symmetric one. 
 

 

1 1  1 1   1  1  1 1 
 

First row of P(Y/X)  .  P(X1) =  x  

   x  

   x    x  
 

         

2 3  2 3   2  6  2 6 
 

 

Second row of P(Y/X)  .  P(X2) = 1 x 1  1 x 1  1 x 1  1 x 1   

        
 

2 6 2 6 6 2 2 3  
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Recall 
 

P(XY) = p(X), p(Y/X) 
 

 P(X1Y1) = p(X1) . p(Y1X1) = 1 . 1           
 

           
 

                            3           
 

P(X1Y2) = 1 , p(X1, Y3) = 1 = (Y1X4) and so on.    
 

3 
    

 

                6                   
 

           1 1    1      1    
 

          

  

                            

 

    

          6    6    12   12    
 

           
 

        
 

   
 

                                          
 

  P(X/Y) =                                 
 

            1    1   1     1      
 

           

 

           

 

   
 

          

 

                                 

                

12 
  

6 
             

           12         6    
 

H(Y/X) = ∑∑p(XY) log 
     1                  

 

                     

p(Y / X) 
          

 

                                 
 

Substituting for various probabilities we get,      
 

H(Y/X)  1 log 3  1 log 3  1 log 6  1 log 6   1 log 6  

  

12 
   

   6       6                  12  12  
 

 1 log 6  1 log 3  1 log 3           
 

              

12       6        6                       
 

= 4 x 
1 

log 3  4 x 
 1 

log 6 
          

 

6 12 
          

 

                                          
 

= 2 x 1 log 3  1 log 6   =  ?           
 

             

3 3  
 
5. Given joint proby. matrix for a channel compute the various entropies for the input and 

output rv’s of the channel.  
 

 0.2 0 0.2 0  
 

  
0.1 0.01 0.01 0.01 

 
 

 
   

     
 

P(X . Y) = 0 0.02 0.02 0  
 

  

0.04 0.04 0.01 0.06 
 

 

   
 

  

0 0.06 0.02 0.2 
 

 

   
  

Solution: 
 

P(X) = row matrix:  Sum of each row of P(XY) matrix. 
 

 P(X) = [0.4, 0.13, 0.04, 0.15, 0.28] 
 

P(Y) = column sum =  [0.34, 0.13, 0.26, 0.27] 
 

 

1.  H(XY) = ∑∑p(XY) log 
1 

 3.1883 bits/sym. 
 

  

p(XY)  
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2. H(X) = ∑p(X) log 
1 

 2.0219 bits/sym. 
 

  

p(X)  

     
 

3. H(Y) = ∑p(Y) log 
1 

 1.9271 bits/sym. 
 

  

p(Y)  

     
 

 
Construct the p(X/Y) matrix using, p(XY) = p(Y) p(X/Y) 

 
    0.2 

0 
 0.2  

0 
 

 

   

 

 

 

  

 

 

   

0.34 0.36 
 

 

          

   
 

      
 

 

   

0.1 
 

0.01 
 

0.01 0.01 
 

      
 

    0.34  0.13  0.26   0.27  
 

 

p(XY) 
   

 0.02 
 

0.02 
    

 

or P(X/Y) = =  0   0   

p(Y) 0.13 
 

0.26 
  

         
 

    
0.04 0.04 

 
0.01 0.06 

 
 

   
 

 
 

 

            

   

0.34 0.13 
 

0.26 
 

0.27 
 

       
 

    
0 

0.06  0.02  0.2  
 

   

 

       

 

 

   

0.13 
 

0.26 
 

0.27 
 

        
 

 

4.  H(X/Y) =  ∑∑p(XY) log p(X / Y)  1.26118 bits/sym. 
 

 

Problem: 
 

Construct p(Y/X) matrix and hence compute H(Y/X). 
 

Rate of Information Transmission over a Discrete Channel : 
 

 For an M-ary DMC, which is accepting symbols at the rate of rs symbols per second, the 

average amount of information per symbol going into the channel is given by the entropy of 
the input random variable ‘X’. 

 
M  

i.e., H(X) =  ∑pi
t
  log 2  pi

t
 ----- (1) 

i  1 
 

Assumption is that the symbol in the sequence at the input to the channel occur in a statistically 
independent fashion. 

 

 

 Average rate at which information is going into the channel is  

Din = H(X), rs bits/sec ----- (2) 
 

 

 Is it possible to reconstruct the input symbol sequence with certainty by operating on the 
received sequence? 
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 Given two symbols 0 & 1 that are transmitted at a rate of 1000 symbols or bits per second.  

With p 0
t
   

1 
& p1

t
   

1 
 

  
 

2  2 
  

Din at the i/p to the channel = 1000 bits/sec. Assume that the channel is symmetric with the 
probability of errorless transmission p equal to 0.95. 

 

 

Rate of transmission of information: 
 
 Recall H(X/Y) is a measure of how uncertain we are of the input X given output Y. 




 What do you mean by an ideal errorless channel? 




 H(X/Y) may be used to represent the amount of information lost in the channel. 



 Define the average rate of information transmitted over a channel (Dt). 
 
 

  Amount of information 
 

Amount of  
 

         
r

s  

Dt ∆        

   

going into the channel 
   

information lost 
   

       
  

          
 

Symbolically it is,        
 

Dt = H (H)  H(X / Y)  .rs bits/sec.    
 

 
 
When the channel is very noisy so that output is statistically independent of the input, H(X/Y) = H(X) 
and hence all the information going into the channel is lost and no information is transmitted over the 

channel. 
 
 
DISCRETE CHANNELS: 
 
1. A binary symmetric channel is shown in figure. Find the rate of information transmission 

over this channel when p = 0.9, 0.8 & 0.6. Assume that the symbol (or bit) rate is 

1000/second.  
 

 p  
 

 1 – p p(X = 0) = p(X = 1) = 
1

 
 

Input 
 2 

 

1 – p 
Output 

 

X Y  

 
 

 p  
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Example of a BSC 
 
Solution: 
 

H(X) = 
1 

log 2 2  
1 

log 2  2 1 bit / sym.  

  
 

2  2   
  

 Din  rs  H(X) 1000 bit / sec 
 
By definition we have, 

Dt = [H(X) – H(X/Y)] 

Where, H(X/Y) =  ∑∑pXY log pX / Y . rs  
i j 

 
Where X & Y can take values. 

 

 

X Y 
  

0 0 

0 1 

1 0 

1 1 
  

 

 H(X/Y)  = - P(X = 0, Y = 0) log P (X = 0 / Y = 0)  
 

= - P(X = 0, Y = 1) log P (X = 0 / Y = 1)  
 

= - P(X = 1, Y = 0) log P (X = 1 / Y = 0)  
 

= - P(X = 1, Y = 1) log P (X = 1 / Y = 1)  
 

 

The conditional probability p(X/Y) is to be calculated for all the possible values that X & Y can 

take. 

 
 
Say X = 0, Y = 0, then  

P(X = 0 / Y = 0) = p(Y  0 / X  0) p(X 

 0) p(Y  0) 
 

Where      
 

     Y  0  
 

    
 

 
 

 

      

p(Y = 0) = p(Y = 0 / X = 0) . p(X = 0) + p (X = 1) . p 
X 1 

  

      
 

= p . 1  1 (1 – p)   
 

     

2 2    
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 p(Y = 0) = 

 
 

1  
2 

 
 p(X = 0 /Y = 0) = p 

 

 

Similarly we can calculate 

p(X = 1 / Y = 0) = 1 – p 

p(X = 1 / Y = 1) = p 
 

p(X = 0 / Y = 1) = 1 – p 
 

 

 1 
p log 2 p  

1 
(1  p) log 2  (1  p)  

 
 

 

   
 

2 2 
 

 

         
 

 H (X / Y)   = - 
 1 

    
1 
   

  

p log 2 p  (1  p) log (1  p) 
 

  

 

 

 

2 
  

 

    2   
  

= - p log 2  p   (1  p) log 2  (1  p)  
 

 Dt rate of inforn. transmission over the channel is = [H(X) – H (X/Y)] . r s   

with, p = 0.9, Dt = 531 bits/sec. 

p = 0.8, Dt = 278 bits/sec. 
 

p = 0.6, Dt = 29 bits/sec. 
 

 

 What does the quantity (1 – p) represent? 

 What do you understand from the above example? 
 

 

2. A discrete channel has 4 inputs and 4 outputs. The input probabilities are P, Q, Q, and P. 

The conditional probabilities between the output and input are. 
 

P(y/x) 
   Y  

 

 

0 1 2 3  

   
 

  0 1 – – – 
 

X 
 1 – p (1–p) – 

 

 2 – (1–p) (p) –  

  
 

  3 – – – 1 
 

 
Write the channel model. 

 
Solution: The channel model can be deduced as shown below: 
 
Given, P(X = 0) = P 
 

P(X = 1) = Q 
 

P(X = 2) = Q 
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P(X = 3) = P    
 

Off course it is true that:  P + Q + Q + P = 1 
 

i.e., 2P + 2Q = 1    
 

 Channel model is    
 

0 1 0  
 

1 p 1  
 

  1 – p = q  
 

Input  
(1 – p) = q 

Output 
 

X  Y  

  
 

2 
p 

2  
 

   
 

3 
1 

3  
 

   
 

 

 What is H(X) for this? 


H(X) = - [2P log P + 2Q log Q] 




 What is H(X/Y)? 
 

H(X/Y) = - 2Q [p log p + q log q] 
 

= 2 Q .   
 

 

1. A source delivers the binary digits 0 and 1 with equal probability into a noisy channel at a 

rate of 1000 digits / second. Owing to noise on the channel the probability of receiving a 

transmitted ‘0’ as a ‘1’ is 1/16, while the probabi lity of transmitting a ‘1’ and receiving a ‘0’ 

is 1/32. Determine the rate at which information is received.  

 
 
Solution: 
 

Rate of reception of information is given by –  
 

R = H
1
(X) - H

1
(X/Y) bits / sec  -----(1)  

 

Where, H(X) =  ∑p(i) log p(i) bits / sym.  
 

 i         
 

H(X/Y) =  ∑ ∑p(ij) log p(i / j) bits / sym. -----(2) 
 

i j       
 

1 1  1  1   
 

H(X) =   log    log  1 bit / sym.   

      

2 2  2  2   
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Channel model or flow graph is 

 

0 
15/16 

0   
 

  1/32 
 

Input  
1/16 

 

  
 

1 
31/32 

1 
 

  
 

 
Index ‘i' refers to the I/P of the 
channel and index ‘j’ referes to 

the output (Rx) 
 
Output 

 
Probability of transmitting a symbol (i) given that a symbol ‘0’ was received was received is denoted 
 
as p(i/j). 
 

 
i  0   

 

 
 

 ?    
What do you mean by t he probability p   

 j  0   
 

 How would you compute p(0/0) 


Recall the probability of a joint event AB p(AB) 

P(AB) = p(A) p(B/A) = p(B) p(A/B) 


i.e., p(ij) = p(i) p(j/i) = p(j) p(i/j) 

from which we have, 

p(i/j) = 
p(i) p( j / i) 

 -----(3)  
p( j) 

 

   
 

    
 

 

 What are the different combinations of i & j in the present case? 
 

Say i = 0 and j = 0, then equation (3) is p(0/0) 
p(0) p(0 / 0)

 p( 

j  0) 
 

 What do you mean by p(j = 0)? And how to compute this quantity? 


Substituting, find p(0/0) 
 

Thus, we have,    p(0/0) = 
p(0 / 0) p(0 / 0) 

 

p(0) 
 

           
 

 1 x 15      
 

= 2 16  = 30  = 0.967 
 

    31  31   
 

   64       
 

 
 p(0/0) = 0.967  

 

 

 Similarly calculate and check the following. 
 
 1 

 
1   1  

 
31 0  

 
22   

 

 p  

 

  ,  p   

 ; p   

    

 

31 
  

1 33 
   

 0   1   33     
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 Calculate the entropy H(X/Y) 
 

      0           0     
 

H(X/Y)  p(00) log p    
  p(01) log p  

     

      

      0           1     
 

         1           1  
 

 

 p(10) log p     p(11) log p    

  

 

 

0 1 
 

                      
 

Substituting for the various probabilities we get,   
 

 15   30      1   2  31    
 

H(X/Y)    log  
  

   
   log  

  
          

 

                  

 32   31      32   33  64     
 

    31 
 

 1    1          
 

  log p    

 

    log   

  

         

                    

    33   64   31          
 

 
Simplifying you get, 

 
H(X/Y) = 0.27 bit/sym. 

 

 [H(X) – H(X/Y)] . r s  
 

= (1 – 0.27) x 1000 

 R = 730 bits/sec.  

 

2. A transmitter produces three symbols ABC which are related with joint probability shown.  
 
 

p(i) i 
 

p(j/i) 
 j         

 

              
 

       A B  C  
 

                
 

 
9/27 A 

   
A 0 

 4  1    
 

 

   

 

         

   

5 
 

5 
   

 

              
 

       

1 
 

1 
      

 

 
16/27 B 

 
i 

 
B 

  
0 

   
 

 

 

 

     

 

    

 

2 
 

2 
   

 

              
 

       

1 
 

2 
 

1 
  

 

 
2/27 C 

   
C 

    
 

 

               

   

2 
 

5 
 

10 
  

 

           
 

                  
 

Calculate H(XY)                 
 

Solution:                 
 

By definition we have                
 

H(XY) = H(X) + H(Y/X) -----(1)            
 

Where,  H(X) =  ∑p(i) log p(i) bits / symbol -----(2)         
 

 i                 
 

and H(Y/X) =  ∑ ∑p(ij) log p( j / i) bits / symbol -----(3)         
 

 i j                
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From equation (2) calculate H(X) 
 

 H(X) = 1.257 bits/sym.  
 

 

 To compute H(Y/X), first construct the p(ij) matrix using, p(ij) = p(i), p(j/i) 
 

p(i, j) 
j           

 

            
 

  A  B  C 
 

            
 

 
A 0 

 4    1   
 

 

           

 

15 
   

15 
  

 

          
 

i B 
8  8    

0 
  

 

       

 

   

27 
 

27 
   

 

         
 

 
C 

1  4   1  
 

 

             

27 
 

135 
 

135 
 

 

     
 

              
 

 
 

  From equation (3), calculate H(Y/X) and verify, it is 


H(Y/X) = 0.934 bits / sym. 

 Using equation (1) calculate H(XY) 

 H(XY) = H(X) + H(Y/X) 

= 1.25 + 0.934  
 
 
 
2.5 Capacity of a Discrete Memory less Channel (DMC): 
 
 

 Capacity of noisy 

DMC Is Defined as – 
 

The maximum possible rate of information transmission over the channel. 
 
In equation form –  

C Max Dt  -----(1) 
P ( x )  

 
i.e., maximized over a set of input probabilities P(x) for the discrete 

 

Definition of  Dt?  

Dt: Ave. rate of information transmission over the channel defined as 
 

Dt  H(x)  H(x / y)rs bits / sec. -----(2) 

 Eqn. (1) becomes   
   

C  Max H(x)  H(x / y)rs   -----(3) 
P ( x )   
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 What type of channel is this? 



 Write the channel matrix 
 

P(Y/X) 
 Y  

 

   
 

0 ? 1 
 

  
 

     
 

X 
0 p q p 

 

    
 

1 o q p 
 

 
 

     
 

 

 Do you notice something special in this channel? 



 What is H(x) for this channel? 
Say P(x=0) = P & P(x=1) = Q = (1 – P) 
H(x) = – P log P – Q log Q = – P log P – (1 – P) lo   g (1 – P) 

 

 What is H(y/x)? 
H(y/x) = – [p log p + q logq] 

 
 
 

DISCRETE CHANNELS WITH MEMORY:  
In such channels occurrence of error during a particular symbol interval does not influence the 

occurrence of errors during succeeding symbol intervals  
–   No Inter-symbol Influence   
This will not be so in practical channels – Errors do not occur as independent events but tend to 
occur as bursts. Such channels are said to have Memory.  
Examples: 

–   Telephone channels that are affected by switching transients and dropouts  

–   Microwave radio links that are subjected to fading  

 
In these channels, impulse noise occasionally dominates the Gaussian noise and errors occur in 

infrequent long bursts. 

 
Because of the complex physical phenomena involved, detailed characterization of channels with 
memory is very difficult. 

 

GILBERT model is a model that has been moderately successful in characterizing error bursts in 

such channels. Here the channel is modeled as a discrete memoryless BSC, where the probability of 
error is a time varying parameter. The changes in probability of error are modeled by a Markoff 

process shown in the Fig 1 below. 
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The error generating mechanism in the channel occupies one of three states. 

Transition from one state to another is modeled by a discrete, stationary Mark off process. 
 

For example, when the channel is in State 2 bit error probability during a bit interval is 10
-2

 and the 
channel stays in this state during the succeeding bit interval with a probability of 0.998.  
However, the channel may go to state 1wherein the bit error probability is 0.5. Since the system 
stays in this state with probability of 0.99, errors tend to occur in bursts (or groups).  
State 3 represents a low bit error rate, and errors in this state are produced by Gaussian noise. Errors 
very rarely occur in bursts while the channel is in this state.  
Other details of the model are shown in Fig 1.  
The maximum rate at which data can be sent over the channel can be computed for each state of the 
channel using the BSC model of the channel corresponding to each of the three states.  
Other characteristic parameters of the channel such as the mean time between error bursts and mean 
duration of the error bursts can be calculated from the model. 

 

2.  LOGARITHMIC INEQUALITIES: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2  shows  the  graphs  of two  functions y1 = x  -  1 and y2 = ln x .The first function  is 
a  linear  measure  and  the  second function  is  your  logarithmic measure. Observe that  the log 
function  always  lies  below  the linear function , except at x = 1. Further the straight line is a 

tangent to the log function at x = 1.This is true only for the natural logarithms. For example, 

y2 = log2x is equal to y1 = x - 1 at two points.  Viz. at x = 1 and at x = 2 .In between these two values 
 

y1 > y2 .You should keep this point in mind when using the inequalities that are obtained. From the 
 

graphs shown, it follows that, y1 ≤ y2; equality holds good if and only if x = 1.In other words:  
 

   
…… (2.1) 

 

  
ln x ≤ (x-1),   equality  iffy  x = 1 

 

  Multiplying  equation  (2.1)  throughout  by  ‘ -1’  and  
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noting that -ln x = ln (1/x), we obtain another inequality as below. 
 
  1 

 1  x , equality iffy  x = 1 
……..…… (2.2) 

 

 ln    
 

 

    

This  
x
   property of the logarithmic function will be used 

 

 
in establishing the extremal property of the Entropy function (i.e. Maxima or minima property). As an 

additional property, let {p1, p2, p3,…..p n } and {q1, q2, q3,…..q n } be any two sets of probabilities 
n 

such that pi  ≥ 0 ,  qj ≥ 0 ;    i,j  and   ∑ pi  
i 1 

n 

 ∑q j . Then we have:  
j 1 

 

n  qi  

∑ 
p

i  
 

  

.log2 
pi 

 

i 1  
 

 

 

 
 

n  qi 
 

 

log2e .∑ pi   
 

  

.ln   
 

i 1  
p

i 
  

Now using Eq (2.1), it follows that: 

 

n  qi 
 
 log 

n  qi  1 
 

,i  1,2 ,...n 
 

p .log   e .   
 

   

∑ i 2   2 ∑ i 
pi 

   
 

i 1  
p

i  i 1     
 

n n  

 log2 e .∑qi  ∑pi ,  
      i 1  i 1   

 

 n     qi 
      

 

      
  ≤ 0    

 

           

This, then implies ∑  pi .log 2       

 i 1    
p

i      
 

n  1   n   
 1    

 

That is, ∑ pi  
     

 

 
  

 
   

 
 

 equality iffy pi = qi   i=1, 2, 3...n   .......... (2.3)         

.log2   ∑  
p
i 

.log
2    

i 1  
p

i  i 1    
q

i   
  

This inequality will be used later in arriving at a measure for code efficiency 
 

 

3. PROPERTIES OF ENTROPY: 
 

We shall now investigate the properties of entropy function 
 

1. The entropy function is continuous in each and every independent variable ,pk in the 

interval (0,1)  
 

This property follows since each pk is continuous in the interval (0, 1) and that the 

logarithm of a continuous function is continuous by itself.  

 
2. The entropy function is a symmetrical function of its arguments; i.e.  

 

H (pk, 1- pk) = H (1- pk, pk)     k =1, 2, 3...q. 

 
That is to say that the value of the function remains same irrespective of the locations 
(positions) of the probabilities. In other words, as long as the probabilities of the set are 

same, it does not matter in which order they are arranged. Thus the sources S1, S2 and S3 
with probabilities: 
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4 

P1 = {p1, p2, p3, p4}, P2 = {p3, p2, p4, p1} and P3 = {p4, p1, p3, p2} with ∑ pk   1 all have  
k 1 

same entropy, i.e. H (S1) = H (S2) = H (S3) 
 

3.  Extremal property: 
 

Consider a zero memory information source with a q-symbol alphabet 

S ={s1 , s2 , s3 ,….. ,s  q } with associated probabilities P = {p1 , p2 , p3 ,….. ,p  q }. 
 

Then we have for the entropy of the source (as you have studied earlier): 

 
q   

1 
         

 

H ( S )  ∑ p  .log          
 

           

k   

pk 
        

k 1          
 

Consider log q –H(S).  We have:             
 

q      
1 

      
 

log q –H(S) = log q -  ∑ p  .log        
 

          

k     

pk 
    

k 1         
 

q 
 

q     
1 

  
 

=  ∑ p  .log q ∑ p  .log   
 

    

k      k 
pk 

 

k 1   k 1     
 

q      q   
1  = log e ∑ p  .ln q  ∑ p .ln  

  

k        k   

pk 
 

k 1      k 1   
 

q        
1 

    
 

= log e . ∑ p ( ln q ln  )   
 

    

k        

pk 
    

k 1           
 

q 
= log e . ∑ pk ( ln q pk )  

k 1 
 

Invoking the inequality in Eq (2.2), we have:  
     q 

 1 )  Equality iffy q p k = 1,   
 

 

log q –H(S) ≥ log e . ∑ p ( 1 k =1, 2, 3…q.  

  

     k  

q pk 
   

 

     k 1     
 

     
q
 q   1     

 

             
 

  

≥log e  ∑ pk   ∑   

 Equality iffy p k = 1/q,  k =1, 2, 3…q.  

   

q 
 

      
k 1 

    
 

     k 1      
 

q q 1           
 

Since ∑ p ∑    1 , it follows that log q – H(S) ≥ 0   
 

     

k 
k 1 q 

          
 

k 1           
 

Or in other words     H(S) ≤ log q …………………. (2.4) 
 

 

The equality holds good iffy p k = 1/q,  k =1, 2, 3…q. Thus “for a zero memory information source, 

with a q-symbol alphabet, the Entropy becomes a maximum if and only if all the source symbols are 
equally probable” . From Eq (2.4) it follows that: 
 

H(S) max = log q  …   iffy p k = 1/q,   k =1, 2, 3 … q ………………….. (2.5) 

 
Particular case- Zero memory binary sources: 
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For  such  a  source,  the  source  alphabet  is  S=  {0,  1}  with  P=  {q, p}.  Since  p+q=1,  we  have 
 

H(S) = p log (1/p) + q log (1/q) = -p log p-(1-p log (1-p).Further, as 

lim 

log p  0  , we define 

 

p  0 
  

0log 0=0 and 1 log 1=0.  A sketch showing the variation of H(S) with p is shown in Fig.2.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the output of the source is certain (i.e. p=0 or p =1) then the source provides no information. The 

maximum entropy provided by the source is log 22 =1 bit/binits, occurs iffy the ‘ 0’ and the ‘ 1’ are 

equally probable. The outputs of a binary source are ‘Binary digits’ or ‘Binits’. Hence, a sequence of 
binits from a zero memory binary source with equi-probable 0’s and 1’s will provide 1 bit of 
information per binit. If the 0’s and 1’s are not equi-probable, then the amount of information 
provided by a given binit will be either less than or greater than 1 bit, depending upon its probability. 
However the ‘average amount of information’ provide d by a binit from such a source will always be 
less than or equal to 1 bit per binit. 

 

EXTENSION OF A ZERO MEMORY SOURCE:  
The questions of extension of sources arise in coding problems. If multi-alphabet source 

outputs are to be encoded in to words of a lesser alphabet, then it is necessary to have an extension of 

the later. For example , if we are to code four messages with a binary source S={ 0 , 1 } , it is 
necessary to have the binary word { 00 , 01 , 10 , 11 ,}, leading to the second extension of the source. 
Thus, if a zero memory source S has the alphabets { s 1 , s 2 , , s 3 ,  …, s   q }, then its n 

th
  extension, 

called  S 
n
, is  a zero memory source with  q 

n
 symbols{ σ 1 ,σ 2 , σ 3 , σ 4 ,   ……. , σ q 

n
 } as its 

higher order alphabet. The corresponding statistics of the extension are given by the probabilities: 
 

P (σ i) = P (s i i1, s i2, s i3 ……. , s in) (Problem 2.1.6 Simon Haykin) 

where    σ i  = { s i1 , s i2 , s i3  ……. , s in  } , that is , each σ i  corresponds  to some  sequence of  n 

- symbols, si,of the source. Since it is a zero memory source all the resultant composite symbols are 
independent. There fore: 

P (σ i) = P(s i i1).P(s i2) .P(s i3) … P (s in). Further: 
 q 

n  

The condition that   ∑ P(  i )  1  is satisfied , sin ce , 
 i 1  

 q
n  

∑ P(  i )  ∑P( si 1 ).P( si 2 )..........P( sin ) 

S n i 1  
q q 

 ∑ P (si1 ).∑ P (si 2 ) ............ 
i1 1 i2 1 

q 

∑P(sin ) 
in 1  

 1 

q 
 

sin ce each   ∑(.)  1 
 

 
It then follows that:  
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H (S 
n
 )  ∑P( i ).log 

S 
n 

 
 

 ∑P( i ).log 
S 

n 
 

 

 ∑P( i ).log 
S 

n 

 
 
 

1          
 

           

P( i )          
 

   1    .    
 

           

           

P(si1 )P(si 2 ).P(si 3 )..........P(sin )    
 

1  .  ∑P( i ).log 
1 .  .............∑P( i ).log 

1 
.        

 

P(si1 ) P(si 2 ) 
 

 

 S 
n   S 

n  P(sin ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thus the Entropy of the extension, S
n

, of the Zero memory is ‘n’ times the Entropy of the original 
source. 

 

Example:  

A zero memory source has a source alphabet S = {s1, s2, s3} , with P = {1/2, 1/4, 1/4}. Find the 
entropy of the source. Find the entropy of the second extension and verify Eq (2.6). 
We have H(S) = (1/2) ×log (2) + 2× (1/4) × log 4 = 1.5 bits /sym. The second extension and the 

corresponding probabilities are tabulated as below:  
 

S 
2
   =  {s1s1 , s1s2 , s1s3 , s2s1 , s2s2 , s2s3 , s3s1 , s3s2 , s3s3  } 

 

P( S 
2
 ) =  { 1/4 , 1/8 , 1/8 , 1/8 , 1/16 , 1/16 , 1/8 , 1/16 , 1/16 } 

 

Hence, H(S 
2
) = (1/4) ×log 4 + 4× (1/8) log 8 + 4 × (1/16) ×log   16 = 3.0 bits / sym. 

{H (S 
2
)} {H (S)} =  3 / 1.5  =  2  ;  and  indeed  H ( S 

2
 )=  2. H (S) 

 
SHANNON’S FIRST THEOREM (Noiseless Coding Theorem): 

 

“ Given a code with an alphabet of r-symbols and a source with an alphabet of q-symbols, the average 

length of the code words per source symbol may be made as arbitrarily close to the lower bound 

H(S)/log r as desired by encoding extensions of the source rather than encoding each source symbol 

individually”. 

 
The draw back is the increased coding complexity of the encoding procedure caused by the 

large number (q
n
) of source symbol with which we must deal and in the increased time required for 

encoding and transmitting the signals. Although the theorem has been proved here for zero memory 
sources, it is also valid for sources with memory i.e. for Markov sources. 
 

 

Construction of some Basic Codes: 
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So far we have discussed the properties of the codes, bounds on the word lengths and the 

Shannon’s first fundamental theorem. In this section we present some code generating techniques – 

Shannon’s encoding procedure, Shannon – Fano codes and Huffman’s minimum redundancy codes. 
 
 
 
 
 

 

Shannon binary encoding procedure: 

 
We present, first, the Shannon’s procedure for generating binary codes mainly because of its 

historical significance. The procedure is based on Eq (5.32). The technique is easy to use and 
generates fairly efficient codes. The procedure is as follows: 

 
1. List the source symbols in the order of decreasing probability of occurrence. 
 

S= {s1, s2…   sq}; P= {p1, p2…  .pq}: p1 ≥ p2 ≥ …… ≥pq 

 
2. Compute the sequence: 
 

0 = 0, 

1 = p1,  
2 = p2+p1 = p2+1 

3=p3+p2+p1 = p3 + 2 
.  

q-1= pq-1+ pq-2+ ……+p 1 = pq-1 + q-2. 

q=pq +pq-1+ ……+p 1 = pq + q-1 =1 
 

3. Determine the set of integers, lk, which are the smallest integer’s solution of the   inequalities. 

2
l
k   pk ≥ 1, k=1, 2, 3 …q  . Or alternatively, find lk such that 2

lk
    pk . 

 

4. Expand the decimal numbers k in binary form to lk places. i.e., neglect expansion beyond lk digits  

 
5. Removal of the decimal point would result in the desired code.  

 

Example 6.9: 
 
Consider the following message ensemble 

S= {s1, s2, s3, s4}, P= {0.4, 0.3, 0.2, 0.1} 
 
Then following Shannon’s procedure, we have 

 

1) 0.4 > 0.3 > 0.2 > 0.1  
 

2) 0 = 0, 

1 = 0.4   
2 = 0.4+0.3=0.7 

3= 0.7+0.2=0.9 

4= 0.9 + 0.1 = 1.0  
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3) 2
l1

  0.4  l1  2 

2
l

 
2
  0.3  l2  2 

2 
l3

  0.2  l3  3 

2
l4  0.1  l4  4  

 

4) 0 = 0 = 0.00 0 1 

= 0.4 = 0.01 10   

2= 0.7 = 0.101 10 

3 = 0.9 = 0.1110 01  

 

5) The codes are  
 

s1  00, s2  01, s3  101, s4  1110 
 
The average length of this code is 

 

L = 2 × 0.4 + 2 × 0.3 + 3× 0.2 + 3 × 0.1 = 2.4 Bini   ts / message 

 

H(S) = 0.4 log 
1 

+ 0.3 log 
1 

+0.2 log 
1 

+0.1 log 
1 

= 1.84644 bits / message;  

0.4 0.3 0.2 0.1 
 

        
 

log 2 = 1.0  and  c   H ( S )  1.84644  76.935 % ; Ec = 23.065 %  

   

   L Log r 2.4  1      
 

 

 

Shannon – Fano Binary Encoding Method:  
Shannon – Fano procedure is the simplest available. Code obtained will be optimum if and only if 

pk  r 
l

 
k
 .The procedure is as follows: 

 
1. List the source symbols in the order of decreasing probabilities.  

 
2. Partition this ensemble into almost two equi- probable groups.   

Assign a ‘ 0’ to one group and a ‘ 1’ to the other group. These form the starting code symbols 

of the codes. 

 
3. Repeat steps 2 and 3 on each of the subgroups until the subgroups contain only one source 

symbol, to determine the succeeding code symbols of the code words.  

 
4. For convenience, a code tree may be constructed and codes read off directly.  

 

Example 

Consider the message ensemble S = {s1, s2, s3, s4, s5, s6, s7, s8} with 
1 1 1 1  1 1 1 1  

 

P =  ,  ,  ,  ,  ,  ,  ,  , X  { 0 ,1 }  

         

4
 4 8 8  16 16 16 16  
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The procedure is clearly indicated in the Box diagram shown in Fig 6.3. The Tree diagram for the 
steps followed is also shown in Fig 6.4. The codes obtained are also clearly shown. For this example, 

 

L = 2 1 + 2 1 + 3 1 + 3 1 + 4 1 + 4 1 + 4 1 + 4 1  = 2.75 binits / symbol  

   

8 
  

16 
   

4 4 8     16    16 16   
 

H(S) = 2 1 log 4 + 2 1 log 8 + 4 1 log 16 = 2.75 bits/symbol.  

    

  4     8    16          
 

And as log r = log 2 = 1, we have c  
H ( S ) 

 100%  and  Ec = 0% 
 

 

  
 

              L log r        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Incidentally, notice from tree diagram that the codes originate from the same source and diverge into 

different tree branches and hence it is clear that no complete code can be a prefix of any other code word. 

Thus the Shannon- Fano algorithm provides us a means for constructing optimum, instantaneous codes. 
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In making the partitions, remember that the symbol with highest probability should be made 

to correspond to a code with shortest word length. Consider the binary encoding of the following 

message ensemble. 

 

Example 6.11 
 

S = {s1, s2, s3, s4, s5, s6, s7, s8} 
 

P = 0.4 , 0.2 , 0.12 , 0.08 , 0.08 , 0.08 , 0.04 

 

Method - I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Method - II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the partitions adopted, we find L=2.52 binits / sym. for the Method – I 

 

L=2.48 binits/sym for the Method - II 

For this example, H(S) =2.420504 bits/sym and 
 

For the first method, c1  96.052% 

 

For the second method,c 2   97.6% 

 

This example clearly illustrates the logical reasoning required while making partitions. The 
Shannon – Fano algorithm just says that the message ensemble should be partitioned into two almost 

equi-probable groups. While making such partitions care should be taken to make sure that the 
symbol with highest probability of occurrence will get a code word of minimum possible length. In 
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the example illustrated, notice that even though both methods are dividing the message ensemble into 
two almost equi-probable groups, the Method – II as signs a code word of smallest possible length to 

the symbol s1. 
 
 
 
 
 
 
 
 
 
 
 
Review questions : 

 
1. What do you mean by source encoding? Name the functional requirements to be satisfied in the 

development of an efficient source encoder.  

 
2. For a binary communication system, a ‘0’ or ‘1’ is transmitted. Because of noise on the channel, a 

‘0’ can be received as ‘1’ and vice-versa. Let m 0 and m1 represent the events of transmitting ‘0’   
and ‘1’ respectively. Let r 0 and r0 denote the events of receiving ‘0’ and ‘1’ respect ively. Let 

p(m0) = 0.5, p(r1/m0) = p = 0.1, P(r0/m1) = q = 0.2 

i. Find p(r0) and p(r1)  
ii. If a ‘0’ was received what is the probability that ‘0’ was sent  

iii. If a ‘1’ was received what is the probability that ‘1’ was sent.  

iv. Calculate the probability of error.  

v. Calculate the probability that the transmitted symbol is read correctly at the receiver.  

 
3. State Shannon-Hartley’s law. Derive an equation showing the efficiency of a system in terms of 

the information rate per Unit bandwidth. How is the efficiency of the system related to B/W?  

 
4. For a discrete memory less source of entropy H(S), show that the average code-word length for 

any distortion less source encoding scheme is bounded as L≥H(S).  

 
5. Calculate the capacity of a standard 4KHz telephone channel working in the range of 200 to 3300 

KHz with a S/N ratio of 30 dB.  

 
6. What is the meaning of the term communication channel. Briefly explain data communication 

channel, coding channel and modulation channel.  

 
7. Obtain the communication capacity of a noiseless channel transmitting n discrete message 

system/sec.  

 
8. Explain extremal property and additivity property.  

 
9. Suppose that S1, S2 are two memory sources with probabilities p1,p2,p3,……pn for source s1  

and q1,q2,…….qn for source s2 . Show that the entro py of the source s1 

 
n  

H(s1)≤ ∑ Pk log (1/qk) 
K=1 

 
10. Explain the concept of B/W and S/N trade-off with reference to the communication channel. 
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Unit – 3 : Fundamental Limits on Performance 
 
 
 
 

 

Syllabus :  
Source coding theorem, Huffman coding, Discrete memory less Channels, Mutual 
information, Channel Capacity. 6 Hours 

 
 
 
 

 

Text Books:  
Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 
1996. Digital communication, Simon Haykin, John Wiley, 2003. 

 
 
 
 
Reference Books: 

ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007 
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Unit – 3 : Fundamental Limits on Performance 

 

Source coding theorem: 

Compact code: Huffman’s Minimum Redundancy code: 

 
The Huffman code was created by American, D. A. Huffman, in 1952. Huffman`s procedure is 

applicable for both Binary and Non- Binary encoding. It is clear that a code with minimum average 

length, L, would be more efficient and hence would have minimum redundancy associated with it. A 
compact code is one which achieves this objective. Thus for an optimum coding we require: 

 
1) Longer code word should correspond to a message with lowest probability.  
 

2) lk  lk 1  k  1,2 ,......q
r

 
1

  

 

(3) lp-r = lq-r-1 = l q-r-2  = …..=  lq 

 
(4) The codes must satisfy the prefix property. 

 

Huffman has suggested a simple method that guarantees an optimal code even if Eq. (6.13) is 

not satisfied. The procedure consists of step- by- step reduction of the original source followed by a 

code construction, starting with the final reduced source and working backwards to the original 

source. The procedure requires  steps, where 
 

q = r + (r-1) …………………………… (6.24) 

 

Notice that  is an integer and if Eq.(6.24) is not satisfied one has to add few dummy symbols with 
zero probability of occurrence and proceed with the procedure or the first step is performed by setting 

r1 = q-(r-1) while the remaining steps involve clubbing of the last r messages of the respective stages. 
The procedure is as follows: 

 

1. List the source symbols in the decreasing order of probabilities.  

 

2. Check if q = r + (r-1) is satisfied and find the integer ‘ ’ . Otherwise add suitable number of 

dummy symbols of zero probability of occurrence to satisfy the equation. This step is not   
required  if we are to determine binary codes. 

 
3. Club the last r symbols into a single composite symbol whose probability of occurrence is 

equal to the sum of the probabilities of occurrence of the last r – symbols involved in the step.  

 

4. Repeat steps 1 and 3 respectively on the resulting set of symbols until in the final step exactly 
r- symbols are left.  

 

5. Assign codes freely to the last r-composite symbols and work backwards to the original 

source to arrive at the optimum code.  

 
6. Alternatively, following the steps carefully a tree diagram can be constructed starting from the 

final step and codes read off directly.  

 

7. Discard the codes of the dummy symbols.  
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Before we present an example, it is in order to discuss the steps involved. In the first step, 
after arranging the symbols in the decreasing order of probabilities; we club the last r-symbols into a 

composite symbol, say 1 whose probability equals the sum of the last r-probabilities. Now we are 

left with q-r+1 symbols .In the second step, we again club the last r-symbols and the second reduced 
source will now have (q-r+1)-r+1= q-2r+2 symbols .Continuing in this way we find the k-th reduced 

source will have q- kr + k = q – k(r - 1) symbols. Accordingly, if  -steps are required and the final 

reduced source should have exactly r-symbols, then we must have r = q -  (r - 1) and Eq (5.38) is 
proved. However, notice that if Eq (6.24) is not satisfied, we may just start the first step by taking the 

last r1=q-( r  1 ) symbols while the second and subsequent reductions involve last r-symbols only. 

However, if the reader has any confusion, he can add the dummy messages as indicated and continue 
with the procedure and the final result is no different at all. 

 

Let us understand the meaning of “ working backwards”. Suppose k is the composite symbol 

obtained in the k
th

 step by clubbing the last r-Symbols of the (k-1) 
th

 reduced source. Then whatever 

code is assigned to k will form the starting code sequence for the code words of its constituents in the 

(k-1) 
th

 reduction. 
 
Example 6.12: (Binary Encoding) 
 

S = {s1, s2, s3, s4, s5, s6}, X = {0, 1}; 

 

 1 1 1 1  1  1  
 

P =  ,  ,  ,  ,  ,   
 

      
 

 3 4 8 8  12  12  
 

 
The reduction diagram and the tree diagram are given in Fig 5.7.Notice that the tree diagram can 

be easily constructed from the final step of the source reduction and decomposing the composite 

symbols towards the original symbols. Further, observe that the codes are originating from the same 
source and diverge out into different tree branches thus ensuring prefix property to the resultant code  
.Finally, notice that there is no restriction in the allocation of codes in each step and accordingly, the 

order of the assignment can be changed in any or all steps. Thus for the problem illustrated there can 

be as many as 2. (2.2+2.2) = 16 possible instantaneous code patterns. For example we can take the 

compliments of First column, Second column, or Third column and combinations there off as 

illustrated below. 
 
 
 
 

 

  Code   I  II III 

s1 ……… 0 0  1 0  1 1   1 1 

s2 …….. 1 0 0 0 0 1  0 1 

s3 ……. 0 1 0 1 1 0 1 0 0  1 0 1 

s4 ……. 0 1 1 1 1 1 1 0 1  1 0 0 

s5 ……   1 1 0 0 1 0   0 0 0  0 0 1 

s6 ……. 1 1 1 0 1 1 0 0 1  0 0 0 
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Code I is obtained by taking complement of the first column of the original code. Code II is obtained by 
taking complements of second column of Code I. Code III is obtained by taking complements of third 

column of Code II. However, notice that, lk, the word length of the code word for sk is a constant for all 

possible codes. 

 
For the binary code generated, we have: 
 
 6    

1 
 

1 
   

1 
 

1 
   

 1 
  

1 
 

29 
 

 

L  ∑ pk lk   2   2   3   3    3   3 = binits/sym=2.4167 binits/sym  

     

12 
   

 

 k 1 3 4 8 8     12 12  
 

                         

H(S) = 1  log 3  1 log 4  2  1 log 8  2  1  log 12    
 

        

 3   4    8   12          
 

= 
1 

( 6 log 3  19 ) bits/sym = 2.3758 bits/ sym 
     

 

12 
     

 

                         
  

 c = 

6 log 3
 


 

19
  98.31% ; Ec = 1.69% 

29  
Example 6.13 (Trinary Coding) 

 
We shall consider the source of Example 6.12. For Trinary codes r = 3, [X = (0, 1, 2)] 

Since q = 6, we have from 

q = r + α(r-1)  

α = q  r  6  3  3  1.5  

r  1 
   

 2 2  
 

Thus α is not an integer and hence we require one dummy message which makes α = 2. 
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For this code, we have  

L  1  1  1  1  2  1  2  1  3  1  3  1  19 Trinits / sym .  

      

12 
  

3 4  8 8 12  12  
 

And  6 log 3  19  94.672% , Ec=5.328%     
 

      

c 19             
 

               
 

 
Example 6.14: 

 
We conclude this section with an example illustrating Shannon’s noiseless coding theorem. 

Consider a source S = {s1, s, s3} with P = {1/2, 1/3, 1/6} 
 

A compact code for this source is:  s1  0,  s2 10,  s3 11 

 
Hence we have      

 

L  1   2  2  1.5   
 

      

2 3 6      
 

H (S )  1 log 2  1 log 3  1 log 6  

  

6 
 

  2   3   
 

= 1.459147917 bits/sym 

 c = 97.28%  
 

The second extension of this source will have 3
2
 = 9 symbols and the corresponding probabilities are 

computed by multiplying the constituent probabilities as shown below 

 

 1   1    1   
 

s1 s1 
    

s2 s1 
   

 

s3 s1 
      

4 
  

6 
       

    12   
 

 1  1    1   
 

s1 s2 
    

s2 s2 
  

 

s3 s2 
     

6 
  

9 
     

    18  
 

 1 1  1  
 

s1 s3 
  

s2 s3 
 

s3 s3 
  

 

12 18 36 
 

 

These messages are now labeled ‘ mk’ and are arranged in the decreasing order of probability. 

M = {m1, m2, m3, m4, m5, m6, m7, m8, m9} 
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1 1 1 1 1 1  1  1  1  
 

P =  ,  ,  ,  ,  ,  ,  ,  ,   
 

          

4 6 6 9 12 12  18  18  36  
 

 
The Reduction diagram and tree diagram for code construction of the second extended source is 
shown in Fig 5.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the codes of second extension, we have the following: 

H (S
2
) = 2 H(S)                    

 

L = 2  1 + 2   1 + 3   1 + 3    1 + 4  1 + 4   1 + 4  1 + 5  1 +  5  1 
 

        

36 
 

4     6 6  9  12 12 18 18  
 

            = 107 binits/symbol = 2.97222222 binits/sym  
 

               

            36           
 

c = 
H ( S 

2
 )  

 
2 x 1.459147917 

= 98.186 % Ec = 1.814 % 
    

 

L log 2 
  

2.97222222 
    

 

                  
 

 

An increase in efficiency of 0.909 % (absolute) is achieved.  
This problem illustrates how encoding of extensions increase the efficiency of coding in 

accordance with Shannon’s noiseless coding theorem. 

 

One non- uniqueness in Huffman coding arises in making decisions as to where to move a 

composite symbol when you come across identical probabilities. In Shannon- Fano binary encoding 
you came across a situation where you are required to make a logical reasoning in deciding the 

partitioning. To illustrate this point, consider the following example. 
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Example 6.15: 
Consider a zero memory source with 

S= {s1, s2, s3, s4, s5}; P= {0.55, 0.15, 0.15, 0.10, 0.05};  X= {0, 1} 
Construct two different Huffman binary codes as directed below:  

(a) Move the composite symbol as ‘high’ as possible.  

(b) Move the composite symbol as ‘low’ as possible  

(c) In each case compute the variance of the word lengths and comment on the results.  

 

(a)We shall place the composite symbol as ‘ high’ as possible. The source reduction and the 

corresponding tree diagram are shown in Fig 6.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Symbols s1 s2 s3 s4 s5 

Codes 0 100 101 110 111 

lk 1 3 3 3 3 

 
We compute the average word length and variance of the word lengths as below: 

 

L=0.55+3(0.15+0.15+0.10+0.05) =1.90 binits/symbol  

 
2

 l   = 0.55(1-1.90)
2

 + 0.45 (3-19)
2

 = 0.99 is the variance of the word length. 

(a) We shall move the composite symbol as ‘ low’ as possible. The source reduction and the 

corresponding tree diagram are shown in Fig 5.11.We get yet another code, completely 

different in structure to the previous one.  
 
 

Symbols s1 s2 s3 s4 s5 
  

  
 



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 81 

 

        

 Codes 0 11 100 1010 1011  

 lk 1 2 3 4 4  
        

 
For this case we have:  L = 0.55 + 0.30 + 0.45 + 0.20= 1.90 binits/symbol 

 

Notice that the average length of the codes is same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


2
2= 0.55 (1 -1.9)

2
 + 0.15 (2 -1.9)

2
 + 0.15(3 – 1.9) 

2
 + 0.10(4 -1.9)

2
 + 0.05(4 -1.9)

2
 

 
= 1.29 is the variance of the word lengths. 

 
Thus, if the composite symbol is moved as high as possible, the variance of the average code 

word length over the ensemble of source symbols would become smaller, which, indeed, is desirable. 

Larger variance implies larger buffer requirement for storage purposes. Further, if the variance is 

large, there is always a possibility of data overflow and the time required to transmit information 

would be larger. We must avoid such a situation. Hence we always look for codes that have minimum 

possible variance of the word lengths. Intuitively “ avoid reducing a reduced symbol in the immediate 
next step as far as possible moving the composite symbol as high as possible”. 

 

DISCRETE MEMORYLESS CHANNELS: 
 

A multi-port electric network may be uniquely described by the impedance matrices, viz, 
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Observe that the matrix is necessarily a square matrix. The principal diagonal entries are the self 
impedances of the respective ports. The off diagonal entries correspond to the transfer or mutual 

impedances. For a passive network the impedance matrix is always symmetric i.e. Z
T

 = Z, where the 
superscript indicates transposition. 

 

Similarly, a communication network may be uniquely described by specifying the joint 
probabilities (JPM). Let us consider a simple communication network comprising of a transmitter 

(source or input) and a receiver (sink or output) with the interlinking medium-the channel as shown in 
Fig 4.1. 
 
 
 
 
 
 
 
 
 

Fig 4.1 A Simple Communication System 

 
This simple system may be uniquely characterized by the ‘ Joint probability matrix’ ( JPM), 

P(X, Y) of the probabilities existent between the input and output ports. 

 

p( x1 , y1 ) 
 

 

P( x2 , y1 ) 
 

 
 

P( x3 , y1 ) 
 

P( X ,Y )    

 
M  

 
 

 
 

 M 
 

 

P( xm , y1 ) 
 

 
 

 

p( x1 , y2 ) 

P( x2 , y2 ) 
 
P( x3 , y2 )  

M 
 

M  
P( xm , y2 ) 

 

P( x1 , y3 )   .....  
P( x2 , y3 )   .....  
P( x3 , y3 )   ..... 

M M  
 

M M   
P( xm , y3 )   .....  

 
 

P( x1 , yn )   
 

P( x2 , yn ) 
   

 

   
 

P( x3 , yn )  .......... (4.1)  
 

 

M 
  

 

 
  

 

   
 

M    
 

    
 

P( xm , yn )   
 

For jointly continuous random variables, the joint density function satisfies the following: 

 
 

∫ ∫ f ( x, y)dxdy  1  
 

 
 

∫ f ( x, y)dy  f X ( x)  
  

 

∫ f ( x, y)dx  fY ( y)  
 

 

 
 

………………….  (4 .2) 
 
 
 
…………. (4.3) 
 
 

……… …………..  (4.4) 

 
We shall make use of their discrete counterpart as below:   

\ ∑∑ p( xk , y j )  1 ,Sum of all entries of JPM ......... (4.5) 
k   j   

∑ p( xk , y j )  p( xk ) , Sum of all entries of JPM in the k
th

 r …………..(4.6)  
j   

∑ p( xk , y j )  p( y j ) , Sum of all entries of JPM in the j
th

 column ............ (4.7) 
k   

And also   
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∑ p( xk ) = ∑ p( y j ) =1 ……… …………………… (4.8) 
k j    

 

Thus the joint probabilities, as also the conditional probabilities (as we shall see shortly) form 

complete finite schemes. Therefore for this simple communication network there are five probability 

schemes of interest viz: P(X), P(Y), P(X, Y), P (X|Y) and P (Y|X). Accordingly there are five entropy 
functions that can be described on these probabilities: 

 

H(X): Average information per character or symbol transmitted by the source or the entropy of the 
source. 

 

H(Y): Average information received per character at the receiver or the entropy of the receiver. 

 

H(X, Y): Average information per pair of transmitted and received characters or the average 
uncertainty of the communication system as a whole. 

 

H (X|Y): A specific character yj being received. This may be the result of the transmission of one of the 

xk with a given probability. The average value of the Entropy associated with this scheme when yj covers 

all the received symbols i.e., E {H (X|yj)} is the entropy H (X|Y), called the ‘Equivocation’, a measure of 

information about the source when it is known that Y is received. 

 
H (Y|X)  :  Similar to H (X|Y), this is a measure of information about the receiver. 

 
The marginal Entropies H(X) and H(Y) give indications of the probabilistic nature of the 

transmitter and receiver respectively. H (Y|X) indicates a measure of the ‘noise’ or ‘error’ in t he 

channel and the equivocation H(X |Y) tells about the ability of recovery or reconstruction of the 

transmitted symbols from the observed output symbols. 

 

The above idea can be generalized to an n- port communication system, problem being similar 

to the study of random vectors in a product space (n-dimensional random variables Theory). In each 

product space there are finite numbers of probability assignments (joint, marginal and conditional) of 

different orders, with which we may associate entropies and arrive at suitable physical interpretation. 

However, concepts developed for a two-dimensional scheme will be sufficient to understand and 

generalize the results for a higher order communication system. 

 

Joint and Conditional Entropies: 

 

In view of Eq (4.2) to Eq (4.5), it is clear that all the probabilities encountered in a two 

dimensional communication system could be derived from the JPM. While we can compare the JPM, 

therefore, to the impedance or admittance matrices of an n-port electric network in giving a unique 

description of the system under consideration, notice that the JPM in general, need not necessarily be a 

square matrix and even if it is so, it need not be symmetric. 

 
We define the following entropies, which can be directly computed from the JPM. 

1  1   1   
 

H(X, Y) = p(x1, y1) log 
   

+ p(x1, y2) log 
   

+…+   p(x1, yn) log 
   

 

 p(x1 , y1 ) p(x1 , y2 ) p(x1 , yn )  

      
 

1  1   1   
 

+ p (x2, y1) log   + p(x2,y2) log   +…+   p(x2,yn) log   
 

p(x2 , y1 ) 

  

p(x1 , y1 ) 

 

    p(x2 , y2 )  
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       1          1    1  
 

+… p (xm, y1) log        

+ p(xm,y2) log    +… p(xm,yn) log  or  

p(xm , y1 ) 

    
 

               p(xm , y2 )  p(xm , yn ) 
 

 m n           
1 
              

 

H(X, Y) = ∑∑p(x k , y j ) log 
          

………………(4.9) 
   

 

               

p(x k , y j ) 
     

 

 k 1  j1                 
 

 m      1                   
 

H(X) = ∑ p(xk ) log                       
 

 

p( xk  ) 
               

 

k 1                      
 

Using Eq (4.6) only for the multiplication term, this equation can be re-written as:   
 

m n      1               
 

H(X) = ∑ ∑ p( xk , y j ) log            

………………… (4.10)    
 

p( xk  ) 
          

 

k 1 j1                      
 

 n m           1              
 

Similarly, H(Y) = ∑ ∑ p( xk , y j ) log          

……………….  (4.11)    
 

 

p( y j ) 
     

 

 j1k 1                    
 

Next, from the definition of the conditional probability we have:      
 

P{X = xk | Y = yj} = 
 P{X  xk ,Y  y j }             

 

                          

 

P{Y  y j } 
              

 

                   
 

i.e.,  p(xk | y j ) = p(xk , y j ) ) / p (yj)                
 

m    1   m       1         
 

Then  ∑ p(xk | y j ) =       ∑ p(xk , y j ) =  
. p(y j ) =1 ………. (4.12)   

 

 

p( y j ) 

     

k 1    k 1       p( y j )       
 

Thus, the set [X | yj] = {x1 | yj, x2 | yj… xm | yj}; P [X | yj] = {p(x1 | yj), p(x2 | yj)…  p (xm | yj)}, forms a 
 

complete finite scheme and an entropy function may therefore be defined for this scheme as below: 

m 1  
 

H(X | yj) = ∑ p(xk  | y j )log  .   
 

k 1 p(xk  | y j ) 
 

 
Taking the average of the above entropy function for all admissible characters received, we have the 
average “ conditional Entropy” or “Equivocation”: 
 

H(X | Y) = E {H(X | yj)} j 
n      

 

=  ∑ p( y j ) H(X | yj)    
 

j1      
 

n m  1  
 

=   ∑ p( y j ) ∑ p( xk | y j ) log   
 

p( xk  | y j ) 
 

j1 k 1  
 

nm 
1 

    
 

Or  H(X | Y) = ∑∑ p(xk , y j ) log 
 

……………… (4.13) 
 

   

p(xk  | y j ) 
 

j 1 k 1    
 

 

Eq (4.13) specifies the “ Equivocation “. It specifies the average amount of information n eeded to 

specify an input character provided we are allowed to make an observation of the output produced by 

that input. Similarly one can define the conditional entropy H(Y | X) by: 
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m   n 1   
 

H(Y | X) =  ∑ ∑ p( xk , y j ) log  ……………… (4.14)  

 
 

k 1 j1 p( y j  | xk  )  
 

 
Observe that the manipulations, made in deriving Eq 4.10, Eq 4.11, Eq 4.13 and Eq 4.14, are 
intentional. ‘ The entropy you want is simply the double summation of joint probability multiplied by 
logarithm of the reciprocal of the probability of interest’ . For example, if you want joint entropy, then 
the probability of interest will be joint probability. If you want source entropy, probability of interest will 
be the source probability. If you want the equivocation or conditional entropy, H (X|Y) then probability of 

interest will be the conditional probability p (xK |yj) and so on. 

 
All the five entropies so defined are all inter-related. For example, consider Eq (4.14). We have: 

 

 
H(Y | X) = ∑∑ p(x k , y j ) log 

  1             
 

                  

 

p(y j  | x k ) 
       

 

   k j            
 

 1  
= 

p(xk  )                     
 

 

Since, 
                        

 p( y j | x k ) p(xk , y j )                 
 

                   
 

We can straight away write:                        
 

 
H (Y|X) = ∑∑p(x k , y j )log 

    1  
 ∑∑p(x k 

1  
 

      

, y j )log 
  

 

  

p(y j  | x k ) p(x k ) 
 

  k j         k j     
 

Or H(Y | X) = H(X, Y) – H(X)                     
 

That is: H(X, Y) = H(X) + H(Y | X) ………………………..         (4.15) 
 

Similarly, you can show:  H(X, Y) = H(Y) + H(X | Y)     ……………….   (4.16)   
 

Consider H(X) - H(X |Y). We have:                     
 

      1         1   
 

                 

 

H(X) - H(X |Y) = ∑∑p(x k , y j )  log    

 log        

 

 

 p(x  )  p(x  | y  
 

  

k j 
    

k 
   

k 
) 

 

                j   
 

  
= ∑∑ p(xk , y j )log 

   p(xk , y j )       
……… (4.17) 

 
 

  

p(xk  ) . p(y j ) 
   

 

  k j          
  

Using the logarithm inequality derived earlier, you can write the above equation as: 

H(X) - H(X |Y) =log e ∑∑ p(xk , y j )ln 
p(xk , y j )      

 

p(xk  ) . p(y j ) 
   

 

k   j     
 

   p(xk  ) . p(y j 
  

 

≥ log e ∑∑ p(xk , y j 
  )  
) 1 -        

 

 

p(x 
 

, y 
  

) 
 

 

k   j   

k j 
  

 

        
 

  
) 
   

 

≥log e   ∑ ∑ p(xk , y j - ∑∑ p(xk).p(yj) 
 

k j  k j  
 

      
 

≥log e   ∑ ∑ p(xk , y j ) - ∑ p(xk).∑ p(yj)   ≥ 0 
 

k j  k j  
 

Because  ∑∑ p(xk , y j )  ∑ p(xk )  ∑ p(y j ) =1. Thus it follows that: 
 

k    j k   j  
 

H(X) ≥ H (X|Y)   ………. (4.18) 
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Similarly, H(Y)  H (Y|X) ………….. (4. 19) 
 

Equality in Eq (4.18) &Eq (4.19) holds iffy P (xk , yj) = p(xk) .p(yj); i.e., if and only if input symbols 
and output symbols are statistically independent of each other. 
 

NOTE : Whenever you write the conditional probability matrices you should bear in mind the property 

described in Eq.(4.12), i.e. For the CPM (conditional probability matrix ) P(X|Y), if you add all the 

elements in any column the sum shall be equal to unity. Similarly, if you add all elements along any 

row of the CPM, P (Y|X) the sum shall be unity 

 

Example 4.1 
 
Determine different entropies for the JPM given below and verify their relationships. 

 

 0.2 0 0.2 0  
 

  0.1 0.01 0.01 
  

 

 

 

0.01 
 

      
 

P(X, Y) =  0 0.02 0.02 0  
 

   
0.04 0.01 0.06 

 
 

 0.04 
 

 

      
 

  

0 0.06 0.02 0.2 
 

 

   
 

 
 n 
Using p (xk) = ∑ p(xk , y j) , we have, by adding entries of P(X, Y) row-wise we get: 
 j1 

P(X) = [0.4, 0.1, 0.04, 0. 15, 0.28] 
Similarly adding the entries column-wise we get: 

 

P(Y) = [0.34, 0.13, 0.26, 0.27] 
 
Hence we have:  

H(X,Y )  3  0.2 log  1    0.1 log 1      4  0.01 log   1       
 

0.2 
           

 

           0.1       0.01      
 

3  0.02 log  1      2  0.04 log 1     2  0.06 log   1   
 

0.02 
  

0.04 
      

                  0.06   
 

= 3.188311023 bits /sym                      
 

H(X) = 0.4  log 
1 
 0.13 log 

  1 
 0.04  log 

 1  
 0.15 log 

 1   
 0.28 log 

1 
 

0.4 0.13 0.04 0.15 0.28 
 

                   
 

= 2.021934821 bits / sym                      
 

H(Y) = 0.34 log 
 1   

 0.13 log 
1  

 0.26 log 
 1  

 0.27 log 
 1       

 

0.34 
 

0.13 
 

0.26 
  

0.27 
    

 

                      
 

= 1.927127708 bits / sym 
 

 

P(x k , y j ) 
Since p (xk | yj) = we have: 

P( y j ) 
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(Divide the entries in the j
th

 column of the JPM of p (yj) 
 

 

  0.2      
0 

      0.2      
0 

               
 

 

 

      

    

          

   

 

 

           

 

0.34        

0.26                
 

                                     

 

 

                         

 

          
 

 
0.1      

0.01   0.01    
0.01           

 

 
 

          
 

          
 

                                          

 

0.34 
     

0.13 
  

0.26 
   

0.27 
           

                       
 

P (X| Y)  = 
 

0 
     0.02   0.02    

0 
               

 

 

                     

   

 

 

           

     

0.13   0.26               
 

                              
 

 

 

                   

 

           

 0.04      0.04   0.01   0.06              
 

 

 

            

 

          
 

                                          

 

0.34 
     

0.13 
  

0.26 
   

0.27 
             

 

                          
 

  
0 

     0.06    0.02    0.20               
 

       

0.13 
  

0.26 
   

0.27 
              

 

                           
 

 H(X | Y)  0.2log 0.34    0.2log 0.26        0.1log 0.34      

                

  0.2          0.2           0.1     
 

 + 0.01log 0.13       0.01log 0.26     0.01log 0.27     

              

  0.01              0.01     0.01    
 

 + 0.02log 0.13      0.02log 0.26    0.04log 0.34    

            

  0.02               0.02     0.04   
 

 + 0.04log 0.13      0.01log 0.26   0.06 log 0.27 
 

          

  0.04               0.01   0.06 
 

 + 0.06log 0.13     0.02log 0.26   0.2 log 0.27   

        

  0.06               0.02   0.2    
 

 
=1.261183315 bits / symbol 

 

Similarly, dividing the entries in the k
th

 row of JPM by p (xk,), we obtain the CPM P (Y|X).Then we 

have: 

 

  0.2  
0 

 0.2   
0 

   
 

 

 

   

 

    

  
 

 

 

0.4 
 

0.4 
  

 

            

 

 

          

 

 

 0.1 0.01  0.01  0.01  

 
 

  
 

 

                

 

0.13 0.13 
 

0.13 
 

0.13 
  

      
 

P(Y | X)  
 

0 
 0.02  0.02  

0 
   

 

 

        

 

 

 

 

 

0.04 
 

0.04 
  

 

           

 

 

         

 

 

 0.04 0.04  0.01 0.06   
 

 

 

    

 

 

                 

  

0.15 0.15 
 

0.15 
 

0.15 
  

 

       
 

  
0 

  0.06  0.02  0.20    
 

   

0.28 
 

0.28 
 

0.28 
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And  H(Y | X)  2  0.2log 0.4    0.1log 0.13  3  0.01 log 0.13  2  0.02 log 0.04    

  

0.01 
   

0.2     0.1     0.02   
 

 2  0.04 log 0.05  0.01 log 0.15  0.06 log 0.15  0.06 log 0.28   

      

  0.04 0.01  0.06 0.06  
 

 2  0.02 log 0.28   1.166376202 bits / sym .      
 

       

  0.02               
 

Thus by actual computation we have 

 

H(X, Y) = 3.188311023 bits/Sym H(X)= 2.02193482 bit/Sym H(Y)= 1.927127708 bits/Sym 

H(X | Y) = 1.261183315 bits/Sym H(Y | X) = 1.166376202 bits/Sym 

 
Clearly, H(X, Y) = H(X) + H(Y | X) = H(Y) + H(X | Y) 

 

H(X) > H(X | Y) and H(Y) > H(Y | X) 

 

Mutual information: 
 

On an average we require H(X) bits of information to specify one input symbol. However, if 

we are allowed to observe the output symbol produced by that input, we require, then, only H (X|Y) 

bits of information to specify the input symbol. Accordingly, we come to the conclusion, that on an 

average, observation of a single output provides with [H(X) – H (X|Y)] bits of information. This 

difference is called ‘ Mutual Information’ or ‘ Transinformation’ of the channel, denoted by I(X, Y). 

Thus: 

 

I(X, Y)  H(X) - H (X|Y) …………………………..  (4.20) 

 

Notice that in spite of the variations in the source probabilities, p (xk) (may be due to noise in 
the channel), certain probabilistic information regarding the state of the input is available, once the 

conditional probability p (xk | yj) is computed at the receiver end. The difference between the initial 

uncertainty of the source symbol xk, i.e. log 1/p(xk) and the final uncertainty about the same source 

symbol xk, after receiving yj, i.e. log1/p(xk |yj) is the information gained through the channel. This 

difference we call as the mutual information between the symbols xk and yj. Thus 
 
 

 

1  

 

1      
 

I(x k , y j ) log 
    

 
log 

      
 

p(x k ) p(x k| y j ) 
  

 

          
 

 
 log 

 p(xk | y j )      
……………………(4.21 a)  

           

 

 

  

p(xk ) 
      

 

               
 

OrI (xk, yj)  log 
p(x k  .y j )  

……………… (4.21 b) 
 

          

p(x k ).p(y j ) 
 

 

          
 

Notice from Eq. (4.21a) that            
 

I (xk) = I (xk, xk) = log p(x k  | x k )  log 1    
 

 

p(xk ) 
  

 

       p(x k )   
 

 

This is the definition with which we started our discussion on information theory! Accordingly I (xk) 
is also referred to as ‘Self Information’. 
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It is clear from Eq (3.21b) that, as 
 p(xk , y j ) 

 p(y j | xk  ) , 
  

 

 

p(xk  ) 
   

 

           
 

  p(y j | x k ) 1 1  
 

 

I (x k , y j )  log   

= log  

 log     

   

p(y j ) p(y j | x k ) 
 

  p(y j )    
 

Or I (xk, yj) = I (yj) – I (y j |xk)     …………… (4.22) 
 

 
Eq (4.22) simply means that “the Mutual information ’ is symmetrical with respect to its 

arguments.i.e. 

I (xk, yj) = I (yj, xk) …………… (4.23)  
Averaging Eq. (4.21b) over all admissible characters xk and yj, we obtain the average information 
gain of the receiver: 
 

 I(X, Y) = E {I (xk, yj)}                          
 

  
= 
∑∑ 

I(x
k 

, y
 j ). p(xk , y j )               

 

  k  j                              
 

  = 
∑∑ 

p(x
k 

, y
 j ).log 

p(xk , y j )       
…………. (4.24) 

 
From Eq  

             

 

  

  

p(xk )p(y j ) 
      

 

  k  j                        
 

(4.24) we have:                                 
 

          1         1            
 

 

I(X, Y) = ∑∑ p(xk , y j 
          

.  log 
              

1) ) log                 

= H(X) –  H(X | Y)   

p(x  ) p(x  | y    
 

 

k j 
    

k 
  

k j 
)       

 

                           
 

                               …… (4.25)  
 

2) I(X, Y) = ∑∑ p(xk , y j ) [log 
   1   

.  log 
  1          

 

                        

  

p(y j ) p(y j | xk ) 
    

 

  k   j               
 

  = H(Y) – H(Y | X)            …………………….     (4. 26) 
 

3) I(X,Y)  ∑∑ p(xk , y j ) log 
 1    

 .∑∑ p(xk , y j ) 
 
log 

 1  
 

  
 

             

 

p(xk ) 
  

p(y j  ) 
  

 

 k j        k  j              
 

 
∑∑ p(xk , y j ) log 

1                         
 

                             

 

p(xk 
 

y j  ) 
                  

 

 K J                        
 

Or   I(X, Y) = H(X) + H(Y) – H(X, Y)          …………………..      (4.27  ) 
 

 
Further, in view of Eq.(4.18) & Eq.(4.19) we conclude that, “ even though for a particular received 

symbol, yj, H(X) – H(X | Yj) may be negative, when all the admissible ou tput symbols are covered, the 

average mutual information is always non- negative”. That is to say, we cannot loose information on an 

average by observing the output of a channel. An easy method, of remembering the various relationships, 

is given in Fig 4.2.Althogh the diagram resembles a Venn-diagram, it is not, and the diagram is only a 

tool to remember the relationships. That is all. You cannot use this diagram for proving any result. 
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The entropy of X is represented by the circle on the left and that of Y by the circle on the right. The 

overlap between the two circles (dark gray) is the mutual information so that the remaining (light 

gray) portions of H(X) and H(Y) represent respective equivocations. Thus we have 

 

H(X | Y) = H(X) – I(X, Y) and H (Y| X) =  H(Y) – I(X, Y) 
 
The joint entropy H(X,Y) is the sum of H(X) and H(Y) except for the fact that the overlap is added 

twice so that  
H(X, Y)  =  H(X) + H(Y) - I(X, Y) 

 
Also observe H(X, Y) = H(X) + H (Y|X)  

= H(Y) + H(X |Y) 
 
For the JPM given in Example 4.1, I(X, Y)  = 0.760751505 bits / sym 

 

Shannon Theorem: Channel Capacity:  
Clearly, the mutual information I (X, Y) depends on the source probabilities apart from the 

channel probabilities. For a general information channel we can always make I(X, Y) = 0 by choosing 

any one of the input symbols with a probability one or by choosing a channel with independent input 

and output. Since I(X, Y) is always nonnegative, we thus know the minimum value of the 

Transinformation. However, the question of max I(X, Y) for a general channel is not easily answered. 

 
Our intention is to introduce a suitable measure for the efficiency of the channel by making a 

comparison between the actual rate and the upper bound on the rate of transmission of information. 
Shannon’s contribution in this respect is most significant. Without botheration about the proof, let us 

see what this contribution is. 

 

Shannon’s theorem: on channel capacity(“coding Theo rem”) 

 
It is possible, in principle, to device a means where by a communication system will transmit 

information with an arbitrary small probability of error, provided that the information rate R(=r×I 

(X,Y),where r is the symbol rate) is less than or equal to a rate ‘ C’ called “channel capacity”. 

 
The technique used to achieve this objective is called coding. To put the matter more 

formally, the theorem is split into two parts and we have the following statements. 
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Positive statement: 

 

“ Given a source of M equally likely messages, with M>>1, which is generating information at a 

rate R, and a channel with a capacity C. If R ≤ C, then there exists a coding technique such that the 

output of the source may be transmitted with a probability of error of receiving the message that can be 

made arbitrarily small”. 

 
This theorem indicates that for R< C transmission may be accomplished without error even in 

the presence of noise. The situation is analogous to an electric circuit that comprises of only pure 

capacitors and pure inductors. In such a circuit there is no loss of energy at all as the reactors have the 

property of storing energy rather than dissipating. 

 

Negative statement: 

 
“ Given the source of M equally likely messages with M>>1, which is generating information at a 

rate R and a channel with capacity C. Then, if R>C, then the probability of error of receiving the message 

is close to unity for every set of M transmitted symbols”. 

 
This theorem shows that if the information rate R exceeds a specified value C, the error probability 

will increase towards unity as M increases. Also, in general, increase in the complexity of the coding 

results in an increase in the probability of error. Notice that the situation is analogous to an electric 

network that is made up of pure resistors. In such a circuit, whatever energy is supplied, it will be 

dissipated in the form of heat and thus is a “lossy network”.  
You can interpret in this way: Information is poured in to your communication channel. You 

should receive this without any loss. Situation is similar to pouring water into a tumbler. Once the 

tumbler is full, further pouring results in an over flow. You cannot pour water more than your 

tumbler can hold. Over flow is the loss. 

 
Shannon defines “ C” the channel capacity of a communication channel a s the maximum 

value of Transinformation, I(X, Y): 

 

C = ∆ Max I(X, Y) = Max [H(X) – H (Y|X)] …………. (4.28)  
The maximization in Eq (4.28) is with respect to all possible sets of probabilities that could be 

assigned to the input symbols. Recall the maximum power transfer theorem: ‘In any network, 

maximum power will be delivered to the load only when the load and the source are properly 

matched’. The device used for this matching purpose, we shall call a “transducer “. For example, in a 

radio receiver, for optimum response, the impedance of the loud speaker will be matched to the 

impedance of the output power amplifier, through an output transformer. 

 
This theorem is also known as “The Channel Coding Theorem” (Noisy Coding Theorem). It may 

be stated in a different form as below: 
 

R ≤ C or rs H(S) ≤ rc I(X,Y)Max or{ H(S)/Ts} ≤{ I(X,Y)Max/Tc} 

 
“If a discrete memoryless source with an alphabet ‘S’ has an entropy H(S) and produces 

symbols every ‘T s’ seconds; and a discrete memoryless channel has a capacity I(X,Y)Max and is 

used once every Tc seconds; then if 
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There exists a coding scheme for which the source output can be transmitted over the channel and 

be reconstructed with an arbitrarily small probability of error. The parameter C/Tc is called the 

critical rate. When this condition is satisfied with the equality sign, the system is said to be 
signaling at the critical rate. 

 

Conversely, if 
H ( S )

  
I ( X ,Y )Max

 , it is not possible to transmit information over the Ts Tc 
 
channel and reconstruct it with an arbitrarily small probability of error 
 

 

A communication channel, is more frequently, described by specifying the source 

probabilities P(X) & the conditional probabilities P (Y|X) rather than specifying the JPM. The CPM, 

P (Y|X), is usually refereed to as the ‘ noise characteristic’ of the channel. Therefore unless otherwise 

specified, we shall understand that the description of the channel, by a matrix or by a ‘Channel diagram’ 

always refers to CPM, P (Y|X). Thus, in a discrete communication channel with pre-specified noise 

characteristics (i.e. with a given transition probability matrix, P (Y|X)) the rate of information 

transmission depends on the source that drives the channel. Then, the maximum rate corresponds to a 

proper matching of the source and the channel. This ideal characterization of the source depends in turn 

on the transition probability characteristics of the given channel. 
 

 

Redundancy and Efficiency: 

 
A redundant source is one that produces ‘dependent’ symbols. (Example: The Markov 

source). Such a source generates symbols that are not absolutely essential to convey information. As 

an illustration, let us consider the English language. It is really unnecessary to write “U” following 

the letter “Q”. The redundancy in English text is e stimated to be 50%(refer J Das etal, Sham 

Shanmugam, Reza, Abramson, Hancock for detailed discussion.) This implies that, in the long run, 

half the symbols are unnecessary! For example, consider the following sentence. 

 
“ Y.u   sh..ld  b.  abl.  t.  re.d  t.is  ev.n  tho…  sev.r.l  l.t..rs  .r. m.s..ng  ” 

 

However, we want redundancy. Without this redundancy abbreviations would be impossible 

and any two dimensional array of letters would form a crossword puzzle! We want redundancy even 

in communications to facilitate error detection and error correction. Then how to measure 

redundancy? Recall that for a Markov source, H(S) < H(S), where S is an ad- joint, zero memory 

source. That is, when dependence creeps in, the entropy of the source will be reduced and this can be 

used as a measure indeed!  
“ The redundancy of a sequence of symbols is measured by noting the amount by which the entropy 
has been reduced”. 

 
When there is no inter symbol influence the entropy at the receiver would be H(X) for any 

given set of messages {X} and that when inter symbol influence occurs the entropy would be H (Y|X). 

The difference [H(X) –H (Y|X) ] is the net reduction in entropy and is called “ Absolute Redundancy”. 

Generally it is measured relative to the maximum entropy and thus we have for the “ Relative 

Redundancy” or simply, ‘ redundancy’ , E 

 

E =   (Absolute Redundancy) ÷ H(X) 
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Or E  1  
H(Y | X)  

……………………….   ( 4.29)  

H(X) 
 

    
 

 

Careful observation of the statements made above leads to the following alternative definition for 
redundancy, 

 

E  1  
R 

………………………… (4.30)  
C 

 

   
 

 

Where R is the actual rate of Transinformation (mutual information) and C is the channel 

capacity. From the above discussions, a definition for the efficiency, η for the channel immediately 

follows:  

η  Actual rate of mutual information 
maximum possible rate 

 

That is. η  
R  

……… ……………………. (4.31)  

C 
 

 

     
 

and η  1  E 
……………………………… (4.32) 

 

 

Capacity of Channels: 

 
While commenting on the definition of ‘Channel capacity’, Eq. (4.28), we have said that 

maximization should be with respect to all possible sets of input symbol probabilities. Accordingly, 
to arrive at the maximum value it is necessary to use some Calculus of Variation techniques and the 

problem, in general, is quite involved. 

 

Example 3.2: Consider a Binary channel specified by the following noise characteristic (channel matrix): 

 

1  1 
 

 

   

 

 

2 2 
 

P(Y | X )   
 

 1 3   

    

4  4 
 

The source probabilities are:  p(x1) = p, p(x2) = q =1-p 
 

 
Clearly, H(X) = - p log p - (1 - p) log (1 - p) 

 
We shall first find JPM and proceed as below:  

p(x1 ). p(y1 | x1 ) p(x1 ). p(y2 | x1 ) 
 p   p  

 

 

       

 

 

2  2   
 

P(X,Y)
 


  p(x2). p(y1 | x 2 ) p(x2). p(y2 | x2 )  
=

 1  p  3(1  p)  
 

  )    

  

       

 

 

      

4 
 

4 
   

           
 

 
Adding column-wise, we get: 
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  p (y1) =  p  1 - p  1  p   and p (y2) =   p  3(1 - p)   3  p      

 

2 
             

 

          4       4                2    4    4       
 

    1  p  4      3 - p  4                   
 

Hence H(Y) =       log       

      log     

 

                

                                    

  

 
4 

  

 

         

 
4 

 

 

                     
 

      1  p   3 - p                 
 

And H (Y|X) =   p log 2     p log 2    1  p log 4     3(1  p) log 4     

 

2 2 
        

                  4           4     3     
 

               
 

 3 log 3 
p  

3log3 
 

 1  p 
log(1  p)  

3(1 - p) 
log (3  p )  

I(X, Y) = H(Y) – H (Y|X) = 1       

 

             
 

                    

                  

4 
      

4 
     

4 
       

4 
  

 

                                       
 

Writing log x = loge× ln x and setting 
 dI 

= 0 yields straight away: 
       

 

 

dp 
       

 

                                                 
 

p  3a  1  0.488372093 , Where  a =2
(4-3log3)

 = 0.592592593        
 

          

 1  a                                                
  

With this value of p, we find I(X, Y) Max = 0.048821 bits /sym 
 

For other values of p it is seen that I(X, Y) is less than I(X, Y) max 

 
Although, we have solved the problem in a straight forward way, it will not be the case 

 

p . 0.2 . 0.4 .0.5 .0.6 .0.8 whe 

I(X,Y) .0.32268399 .0.04730118 .0.04879494 .0.046439344 .0.030518829 n 

Bits / sym      the 

dim 
ension of the channel matrix is more than two. We have thus shown that the channel capacity of a 
given channel indeed depends on the source probabilities. The computation of the channel capacity 
would become simpler for certain class of channels called the ‘symmetric ‘or ‘uniform’ channels. 

 

Muroga’s Theorem : 

 

The channel capacity of a channel whose noise characteristic, P (Y|X), is square and non-

singular, the channel capacity is given by the equation:  
i n 

Qi 

  
 

C  log ∑2 …………………. (4 .33) 
 

i 1    
 

Where Qi are the solutions of the matrix equation P (Y|X).Q = [h], where h= [h1, h2, h3, h4… h   n] 
t
 
 

are the row entropies of P (Y|X).    
 

 
 
 

p11 
p

12 
p

13 ..... 
 

 p
21 

p
22 

p
23 ..... 

 

 
 

 M M M M 
 

 
p

n1 
p

n2 
p

n3 ..... 

 

 
 

 
 
 
 
p

1n 
p

2n 
M 

 
p

nn 

 
 

 
 

Q1   h1  
 

 Q     h   

 2  
 

  
 

  2 
 

. 
M 

  
M 

 

 

  
 

        
 

Q
n    

h
n 
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n
  

C  log  ∑2 Q
i 

i 1  

 pi  2
Q

i 
C

 , where pi are obtained from: pi  = p1.p1i + p2.p2i + p3.p3i + … +p  n.pni 
 

   p1i  
 

 
    

 

 p1     p2 .....   pn 
p

2 i 
 

pi . 
 

 

   M 
 

     
 

   
p

ni 
 

     
 

  i-th column of P [Y|X] 
 

Or [p1, p2, p3… p  n ] = [p1, p2, p3 … p  n] P [Y|X]. 
 

 
From this we can solve for the source probabilities (i.e. Input symbol probabilities): 
 

[p1, p2, p3 … p  n] = [p1, p2, p3… p  n ] P
-1

 [Y|X], provided the inverse exists. 
 

However, although the method provides us with the correct answer for Channel capacity, this 

value of C may not necessarily lead to physically realizable values of probabilities and if P
-1

 [Y|X] 

does not exist ,we will not have a solution for Qi`s as well. One reason is that we are not able to 

incorporate the inequality constraints 0≤ pi ≤ 1 .Still, within certain limits; the method is indeed very 
useful.  
Example 4.2: Consider a Binary channel specified by the following noise characteristic (channel matrix): 

 

                  1 1      
 

                  

 

    

 

      

         

P(Y | X )  2 
  

2 
     

 

                  
 

                   1   3       
 

                            

                  4 4      
 

The row entropies are:                
 

h  1  log 2  1  log 2  1 bit / symbol .     
 

         

1  2     2                  
 

                       
 

h  1 log 4  3 log 4  0.8112781 bits / symbol .  
 

     

2  4     4    3             
 

                     
 

         3  1            
 

P 
1

 Y | X   

2 

            
 

          1              
 

Q   

Y | X 
h  1.3774438     

 

 1  P 
1

 . 1 

        

 Q
2         

h
2 0.6225562      

 

C  log2
Q1  2 

Q 2
  0.048821 bits / symbol , as before. 

 

Further , p 

  2

Q1 
C

   0.372093 and p   2
Q2 

C
   0.627907. 

 

       

2   

1             

 

   2  

 

 

p    p p p  .P 1 Y | X 0.488372  0.511628 
 

1      1    2            
 

Giving us p = 0.488372                
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Example 4.3: 

 

Consider a 33 channel matrix as below: 

 

PY | X  

0.4 0.6 0 
 

  0 0.5   

0.5 
 

 

     
 

  

0 0.6 0.4 
 

 

   
 

 
The row entropies are: 
 

h1 = h3 = 0.4 log (1/0.4) + 0.6 log (1/0.6) = 0.9709505 bits / symbol. 

 

h2 = 2  0.5 log (1/0.5) = 1 bit / symbol. 
 

  

Y | X  

1.25  1  1.25 
 

P 
1  

5 6  2 3 5 6 
 

 

   
 

        

1 1.25 

 
 

      1.25   
 

  Q1     1     
 

      1.0193633    
 

  Q 
   

  
 

  
2       

 

       

1 

    
 

  
Q

3         
 

C = log {2
-1

 + 2
-1.0193633

 + 2
-1

} = 0.5785369 bits / symbol. 

p1 =2
-Q1 –C

 =0.3348213 = p3, p2 = 2
-Q2 –C

 =0.3303574. 

Therefore,  p1 = p3 =0.2752978 and p2 = 0.4494043. 

 
Suppose we change the channel matrix to: 

 

PY | X  

0.8 0.2 0   

Y | X  

0.625 1  0.625 
 

  0 0.5  P 1  2.5  4 2.5   

0.5 
 

 

  

 

           
 

  
0 0.2 0.8 

      
1 0.625 

 
 

       0.625  
 

We have: 

 h1 = h3 =0.721928 bits / symbol, and  h2 = 1 bit / symbol. 

This results in: 

 Q1 = Q3 = 1; Q2 =  0.39036. 

C = log {2  2
1

 + 2
+0.39036

} = 1.2083427 bits / symbol. 

p1 =2
-Q1 –C

 =0.2163827 =  p3,  p2  =  2
-Q2 –C

  =0.5672345 

Giving: p1 = p3 =1.4180863 and p2 = Negative! 
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Thus we see that, although we get the answer for C the input symbol probabilities computed are not 
physically realizable. However, in the derivation of the equations, as already pointed out, had we 
included the conditions on both input and output probabilities we might have got an excellent result! 
But such a derivation becomes very formidable as you cannot arrive at a numerical solution! You will 
have to resolve your problem by graphical methods only which will also be a tough proposition! The 
formula can be used, however, with restrictions on the channel transition probabilities. For example, 

in the previous problem, for a physically realizable p1, p11 should be less than or equal to 0.64. 

(Problems 4.16 and 4.18 of Sam Shanmugam to be solved using this method) 

 

Symmetric Channels: 
The Muroga’s approach is useful only when the noise characteristic P [X|Y] is a square and 

invertible matrix. For channels with m ≠ n, we can determine the Channel capacity by simple 

inspection when the channel is “ Symmetric” or “Uniform”.  
Consider a channel defined by the noise characteristic:  

p11 
p

12 
p

13 ... 
p

1n   
 

 p
21 

p
22 

p
23 ... 

   
 

 
p

2 n  
 

P[Y | X ]   p31 
p

32 
p

33 ... 
p

3 n  

……………

(4.34) 
 

 

M M M M M 
  

 

   
 

 

p
n1 

p
n2 

p
n3 ... 

   
 

 
p

nn  
 

This channel is said to be Symmetric or Uniform if the second and subsequent rows of the 
channel matrix are certain permutations of the first row. That is the elements of the second and 
subsequent rows are exactly the same as those of the first row except for their locations. This is 
illustrated by the following matrix: 
 

 p1 p2 p3 ... pn  
 

 p
n 1 p2 pn ... p4 

  
 

   
 

P [Y | X ]  p3 p2 p1 ... p5  ……………   (4.35) 
 

 

M M M M M 
  

 

   
 

 

pn 
p

n 1 
p

n 2 ... p1 

  
 

   
  

Remembering the important property of the conditional probability matrix, P [Y|X], that the sum of 

all elements in any row should add to unity; we have: 

 
n 
∑ p j   1 ……………… (4.36) 
j 1 

 

The conditional entropy H (Y|X) for this channel can be computed from: 
 

H ( Y | X )  
m   n 1  

 

∑ ∑ p( xk , y j )log    
 

p( xk , y j ) 
 

 k 1 j 1  
 

m n 1   

   
 

 ∑ p( xk ).∑ p( y j  | xk )log 
 

 

p( y j  | xk ) 
 

k 1 j 1   
  

However, for the channel under consideration observe that: 
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m n 
1 

 n 
1 
 

 

∑ p( xk ).∑ p( y j | xk )log  
 ∑ p j log  h……… (4.37)  

p( y j | xk ) 

 
 

k 1 j 1 j 1 p j 
 

is a constant, as the entropy function is symmetric with respect to its arguments and depends only on 
the probabilities but not on their relative locations. Accordingly, the entropy becomes: 

m 

H (Y | X )  ∑ p( xk ).h  h ……………..(4.38)  
k 1  

as the source probabilities all add up to unity. 

 
Thus the conditional entropy for such type of channels can be computed from the elements of any 
row of the channel matrix. Accordingly, we have for the mutual information: 

 

I(X, Y) = H(Y) – H (Y|X) 
= H(Y) – h  

Hence, C = Max I(X, Y) =Max 

{H(Y) – h} = 

Max H(Y) – h 

 

Since, H(Y) will be maximum if and only if all the received symbols are equally probable and as 

there are n – symbols at the output, we have: 

H(Y) Max = log n 
 
Thus we have for the symmetric channel: 

 

C = log n –  h …………… (4.39) 

 
The channel matrix of a channel may not have the form described in Eq (3.35) but still it can 

be a symmetric channel. This will become clear if you interchange the roles of input and output. That 
is, investigate the conditional probability matrix P (X|Y). 

 
We define the channel to be symmetric if the CPM, P (X|Y) has the form: 

 

p1 pm p2 ... pm   
 

 

p2 
p

m 1 p6 ... 
p

m 1 
  

 

   
 

P( X | Y )   p3 p4 pm ... 
p

m 2  ……………….(4.40) 
 

 

M M M M M 
  

 

   
 

 

pm p1 
p

m 3 ... p1 

  
 

   
  

That is, the second and subsequent columns of the CPM are certain permutations of the first column. 

In other words entries in the second and subsequent columns are exactly the same as in the first 

column but for different locations. In this case we have: 
 

n m 

H ( X | Y )  ∑∑ p( xk , y j )log  
j 1 k 1 

 
 

1 n m  1  
 

 ∑ p( y j )∑ p( xk 
  

 

 

| y j )log   
 

 

p( xk | y j ) 

 

p( xk | y j )   j 1 k 1   
 

n m  
Since  ∑ p( y j )  1   and ∑ 

j 1 k  1 

 

     

1 
 

 
m 

1  h is  a  constant,  because 
 

p( x  | y  )log  ∑ p log  

k j     

   

p( xk | y j ) 
 k 

pk 
 

      k 1 
 

all entries in any column are exactly the same except for their locations, it then follows that: 
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H ( X | Y )  h 
m 

1 
 

 

∑ p log …………   (4.41)  

  

 k 
pk 

  

 k 1  
 

*Remember that the sum of all entries in any column of Eq (3.40) should be unity. 
 

As a consequence, for the symmetry described we have: 

 

C = Max [H(X) – H ( X|Y)] = Max H(X) - h′ 
 

Or C = log m - h′ …………(4.42) 

 
Thus the channel capacity for a symmetric channel may be computed in a very simple and 

straightforward manner. Usually the channel will be specified by its noise characteristics and the 

source probabilities [i.e. P (Y|X) and P(X)]. Hence it will be a matter of simple inspection to identify 

the first form of symmetry described. To identify the second form of symmetry you have to first 

compute P (X|Y) – tedious! 

 

Example 4.4: 
 
Consider the channel represented by the channel diagram shown in Fig 3.3: 

 
The channel matrix can be read off from the channel diagram as:  

1 1 1  1 
 

 

       

 

 

3   3   6   6 
 

P( Y | X )   
 

 1  1  1  1   

 

6 3 
   

6  3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Clearly, the second row is a permutation of the first row (written in the reverse order) and hence the 

channel given is a symmetric channel. Accordingly we have, for the noise entropy, h (from either of 
the rows):  

H (Y|X) = h =2× 
1 

log 3 + 2× 
1 

log 6 = 1.918295834 bits / symbol.  

3 6 
 

   
 

 

C = log n – h = log 4 – h =0.081704166 bits / symbol. 

Example 4.5: 
 
A binary channel has the following noise characteristic: 
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 0 1  
 

0  2  1 
 

 

 

   

 

 

 
3 3  

 
  

 

    
 

1 

1
  2 

 

     
 

 3  3 
 

 
(a) If the input symbols are transmitted with probabilities 3 / 4 and 1 / 4 respectively, find H(X), 

H(Y), H(X, Y), H (Y|X) and I(X, Y).  
(b) Find the channel capacity, efficiency and redundancy of the channel.  

(c) What are the source probabilities that correspond to the channel capacity?  
 

To avoid confusion, let us identify the input symbols as x1 and x2 and the output symbols by y1 and 

y2. Then we have: 
 

P(x1) = 3 /4 and p(x2) = 1 / 4 
 

2  1 
 

 

   

  

 

3 3 
 

P( X | Y )    
 

 1 2    

     

3  3 
  

H ( Y | X )  h  2 log 3  1 log 3  log 3  2  0.918295833 bits / symbol .  

     

3 2 3 3  
 

H ( X )  
3

 log 
4

  
1

 log4  log4  
3

 log 3  2  
3

 log 3  0.811278125 bits / symbol . 4 
3 4 4 4 

 

Multiplying first row of P (Y|X) by p(x1) and second row by p(x2) we get: 

 

 2 
 

3 1 
 

3  1   1 
 

 

     

  

    

 

 

3 4 3 4 2 4 
 

P( X ,Y )        
 

 1  1  2   3    1   1   

3 4 3 
 

4 
      

     12 6 
 

 

Adding the elements of this matrix columnwise, we get:  p (y1) = 7/12, p (y2) = 5/12. 
 

Dividing the first column entries of P (X, Y) by p (y1) and those of second column by 

p (y2), we get:  
6 

P( X | Y )   
7
 

1 
 

7  
From these values we have: 

 
3 
5 
2 
 

5 

H ( Y )  
7

  log 
12

  
5

 log 
12

  0.979868756 bits / symbol . 

12    7  12 5           
 

H ( X ,Y )  1  log 2  1 log4  1 log12  1  log6  1.729573958 bits / symbol .  

    

12 6 
  

2    4            
 

H ( X | Y )  1 log 7  1 log 5  1 log7  1 log 5  0.74970520 bits / symbol  

   

3 
    

2  6 4   12   6  2  
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H ( Y | X )  1  log 3  1 log 3  1  log 3  1 log 3  log 3  2  h ( asbefore ).  

     

12 6 2 3 
 

2 2   4             
 

I ( X ,Y )  H ( X )  H ( X | Y )  0.061572924 bits / symbol .    
 

 H ( Y )  h  0.061572923 bits / symbol .       
 

C  log n  h  log 2  h  1  h  0.081704167 bits / symbol .    
 

Efficiency ,  I ( X ,Y )  0.753608123 or 75.3608123%       
 

          

   C                          
 

Re dundancy , E  1   0.246391876 or 24.6391876%       
 

To find the source probabilities, let p(x1) = p and p(x2) = q = 1 – p .Then the JPM becomes: 
 

        2 
p, 

      1 
p 

          
 

    
 

3 
     

3 
 

         
 

                     

P( X ,Y )                   
 

     1 ( 1  p ), 2               
 

                       

    3       3               
 

Adding columnwise we get:  p( y1 )  1 (1  p) and  p( y2)  1 (2  p)  

    

             3           3      
 

For H(Y) = H(Y) max, we want p (y1) = p (y2) and hence 1+p = 2-p  or p  1   

 
 

                             2  
 

Therefore the source probabilities corresponding to the channel capacity are: p(x1) =1/2 = p(x2). 
 

Binary Symmetric Channels (BSC): (Problem 2.6.2 – S imon Haykin) 

 

The channel considered in Example 3.6 is called a ‘Binary Symmetric Channel’ or ( BSC). It 

is one of the most common and widely used channels. The channel diagram of a BSC is shown in Fig 

3.4. Here ‘ p’ is called the error probability. 

 
For this channel we have:  

H (Y | X )  p log 1  q log 1  H ( p) (4.43)   
 

    

 p   q     
 

   1  1   
 

H (Y )  [ p ( p  q)]log       [q ( p  q)]log  
 …(4.44)  

[ p ( p  q)] 
  

   [q ( p  q)]  
 

I(X, Y) = H(Y) – H (Y|X) and the channel capacity is:  
 

C=1 + p log p +q log q …………(4.45)  
 

 
This occurs when α = 0.5 i.e. P(X=0) = P(X=1) = 0.5 

 
In this case it is interesting to note that the equivocation, H (X|Y) =H (Y|X). 
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An interesting interpretation of the equivocation may be given if consider an idealized 
communication system with the above symmetric channel as shown in Fig 4.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The observer is a noiseless channel that compares the transmitted and the received symbols. 

Whenever there is an error a ‘ 1’ is sent to the receiver as a correction signal and appropriate 

correction is effected. When there is no error the observer transmits a ‘ 0’ indicating no change. Thus 

the observer supplies additional information to the receiver, thus compensating for the noise in the 

channel. Let us compute this additional information .With P (X=0) = P (X=1) = 0.5, we have: 

 

Probability of sending a ‘1’ = Probability of error in the channel . 

 

Probability of error = P (Y=1|X=0).P(X=0) + P (Y=0|X=1).P(X=1) 

= p × 0.5 + p × 0.5 = p  
Probability of no error = 1 – p = q 

 
Thus we have P (Z = 1) = p and P (Z = 0) =q 

 
Accordingly, additional amount of information supplied is: 

 

 p log 
1 
 q log 

1 
 H ( X | Y )  H ( Y | X ) ……..  (4.46)  

p q 
 

    
 

 

Thus the additional information supplied by the observer is exactly equal to the equivocation of the 
source. Observe that if ‘ p’ and ‘ q’ are interchanged in the channel matrix, the trans -information of 

the channel remains unaltered. The variation of the mutual information with the probability of error is 
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shown in Fig 3.6(a) for P (X=0) = P (X=1) = 0.5. In Fig 4.6(b) is shown the dependence of the mutual 

information on the source probabilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.4.4  Binary Erasure Channels (BEC):(Problem 2.6.4 – Simon Haykin) 
 

The channel diagram and the channel matrix of a BEC are shown in Fig 3.7. 
 
 
 
 
 
 
 
 
 
 
 

 

BEC is one of the important types of channels used in digital communications. Observe that 

whenever an error occurs, the symbol will be received as ‘ y’ and no decision will be made about the 

information but an immediate request will be made for retransmission, rejecting what have been received 

(ARQ techniques), thus ensuring 100% correct data recovery. Notice that this channel also is a symmetric 

channel and we have with P(X = 0) =, P(X = 1) = 1 - . 

 

H (Y | X )  plog 
1  
 qlog 

1    
……………… (4.47)  

p q 
  

 

        
 

H ( X )  log 
 1  

 ( 1   )log 
1  

……………. (4.48)  

 ( 1   ) 
 

      
  

The JPM is obtained by multiplying first row of P (Y|X) by  and second row by (1– ). 

We get:  
q p 0 

…………….. (4.49)  P( X ,Y )  

p( 1   )  q( 1 

 
 

0
   )   

 

Adding column wise we get: P (Y) = [q, p, q (1– )] ……………. (4.50) 
 

From which the CPM P (X|Y) is computed as:   
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1  0 
……………… (4.51)  

P( X | Y )  

( 1   ) 

 
 0

 1   
 

 H ( X | Y )  q log1  p log 1  ( 1   ) p log 1   ( 1   )q log1  

 

( 1   ) 
 

     
 

 pH ( X )      
 

I(X, Y) =H(X)– H (X|Y) = (1 – p) H(X) = q H(X) ………… (4.52) 
 

C = Max I (X, Y) = q bits / symbol.    …………… (4.53) 
 

 
In this particular case, use of the equation I(X, Y) = H(Y) – H(Y | X) will not be correct, as H(Y) 

involves ‘ y’ and the information given by ‘ y’ is rejected at the receiver. 

 

Deterministic and Noiseless Channels: (Additional Information) 
 

Suppose in the channel matrix of Eq (3.34) we make the following modifications. 

 
a) Each row of the channel matrix contains one and only one nonzero entry, which necessarily 

should be a ‘ 1’. That is, the channel matrix is symmetric and has the property, for a given k 

and j, P (yj|xk) = 1 and all other entries are ‘ 0’. Hence given xk, probability of receiving it as yj is 

one. For such a channel, clearly  
H (Y|X) = 0 and I(X, Y) = H(Y) ……………. (4.54) 

 
Notice that it is not necessary that H(X) = H(Y) in this case. The channel with such a property will 

be called a ‘ Deterministic Channel’. 

 

Example 4.6: 

 
Consider the channel depicted in Fig 3.8. Observe from the channel diagram shown that the 

input symbol xk uniquely specifies the output symbol yj with a probability one. By observing the 
output, no decisions can be made regarding the transmitted symbol!! 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

b) Each column of the channel matrix contains one and only one nonzero entry. In this case, 

since each column has only one entry, it immediately follows that the matrix P(X|Y) has also 
one and only one non zero entry in each of its columns and this entry, necessarily be a ‘ 1’ 

because:  

If p (yj|xk) =, p (yj | xr) = 0, r  k, r = 1, 2, 3…   m. 
 

Then p (xk, yj) = p (xk) ×  p (yj|xk) =α × p (xk), 
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p (xr, yj) = 0, r  k, r = 1, 2, 3…   m. 
m 

 p (yj) = ∑ p( xr , y j ) = p (xk, yj) = α p (xk)  
   r 1  

 

 p( xk | y j )  
p( xk , y j )  1, and  p( xr | y j )  0 , r  k ,r  1,2 ,3,...m .   

 

   p( y j )  
 

It then follows that H (X|Y) = 0 and I (X, Y) = H(X) ……...  (4.55) 
 

 
Notice again that it is not necessary to have H(Y) = H(X). However in this case, converse of (a) 

holds. That is one output symbol uniquely specifies the transmitted symbol, whereas for a given 

input symbol we cannot make any decisions about the received symbol. The situation is exactly 

the complement or mirror image of (a) and we call this channel also a deterministic channel 

(some people call the channel pertaining to case (b) as ‘Noiseless Channel’, a classification can be 

found in the next paragraph). Notice that for the case (b), the channel is symmetric with respect to 

the matrix P (X|Y). 

 

Example 4.7: 
Consider the channel diagram, the associated channel matrix, P (Y|X) and the conditional 

probability matrix P (X|Y) shown in Fig 3.9. For this channel, let 
 

p (x1)=0.5, p(x2) = p(x3) = 0.25. 
 

Then p (y1) = p (y2) = p(y6) =0.25, p(y3) = p(y4) =0.0625 and p(y5) = 0.125. 

 
It then follows I(X, Y) = H(X) =1.5 bits / symbol, 

 

H(Y) = 2.375 bits / symbol, H (Y|X) = 0.875 bits / symbol and H (X|Y) = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Now let us consider a special case: The channel matrix in Eq (3.34) is a square matrix and all 
entries except the one on the principal diagonal are zero. That is:  

p (yk|xk) = 1 and p(yj|xk)=0kj 
 

Or in general, p (yj|xk) =jk, where jk, is the ‘ Kronecker delta’, i.e. jk =1  if j = k 

=0  if j k. 
 

That  is,  P  (Y|X)  is  an  Identity  matrix  of  order  ‘ n’  and  that  P  (X|Y)  =  P  (Y|X)  and 

p(xk, yj) = p(xk) = p(yj) can be easily verified. 
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For such a channel it follows:  

H (X|Y) = H (Y|X) = 0 and I(X, Y) = H(X) = H(Y) = H(X, Y)   ....… (4.56) 

 

We call such a channel as “ Noiseless Channel”. Notice that for the channel to be noiseless, it 

is necessary that there shall be a one-one correspondence between input and output symbols. No 

information will be lost in such channels and if all the symbols occur with equal probabilities, it 

follows then: 
 

C =I(X, Y) Max=H(X) Max=H(Y) Max=log n bits / symbol. 

 
Thus a noiseless channel is symmetric and deterministic with respect to both descriptions 

P (Y|X) and P (X|Y). 

 

Finally, observe the major concept in our classification. In case (a) for a given transmitted 

symbol, we can make a unique decision about the received symbol from the source end. In case 

(b), for a given received symbol, we can make a decision about the transmitted symbol from the 

receiver end. Whereas for case (c), a unique decision can be made with regard to the transmitted 

as well as the received symbols from either ends. This uniqueness property is vital in calling the 

channel as a ‘Noiseless Channel’. 

 

d)   To conclude, we shall consider yet another channel described by the following JPM: 

p1 

P( X ,Y )   
p2

 
M 

 
p

m 
m   

1 
 

with   ∑ pk   

n  
k  1  

 

  
 

  

p1 p1 ...  p1  
 

p2 p2 ... 
 

p2 
 

 

  
 

M M M  M  
 

pm pm ... 

   
 

 
p

m 
 

i .e . p( yj )  
1 

,  j  1,2 ,3 ,...n.  

n 
 

     
 

 

This means that there is no correlation between xk and yj and an input xk may be received as any 

one of the yj’s with equal probability. In other words, the input-output statistics are independent!! 
 

This can be verified, as we have p (xk, yj) = pk 
       m        

 

      =npk. ∑ pk = p (xk).p (yj)    
 

       k 1       
 

 p(xk|yj) = npk and p(yj|xk) = 1/n          
 

Thus we have:                
 

m  1   m 1   m 1   1   

     
 

   
 

 

H ( X ,Y )  n. ∑ pk log, H ( X )  ∑ npk log   

∑ pk log   

 log   

npk 
 n 

pk 
  

 

k 1   pk  k 1 k 1  n 
 

n 1             
 

H ( Y )  ∑ p( y j )log    logn,          
 

p( y j 
          

 

j 1  )          
  

H ( X | Y )  H ( X ), H ( Y | X )  H ( Y ) and I ( X ,Y )  0 
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Such a channel conveys no information whatsoever. Thus a channel with independent input-

output structure is similar to a network with largest internal loss (purely resistive network), in 

contrast to a noiseless channel which resembles a lossless network. 

 

Some observations: 

 

For a deterministic channel the noise characteristics contains only one nonzero entry, 

which is a ‘ 1’, in each row or only one nonzero entry in each of its columns. In either case there 

exists a linear dependence of either the rows or the columns. For a noiseless channel the rows as 

well as the columns of the noise characteristics are linearly independent and further there is only 

one nonzero entry in each row as well as each column, which is a ‘ 1’ that appears only on the 

principal diagonal (or it may be on the skew diagonal). For a channel with independent input-

output structure, each row and column are made up of all nonzero entries, which are all equal and 

equal to 1/n. Consequently both the rows and the columns are always linearly dependent!! 

 

Franklin.M.Ingels makes the following observations: 

 
1) If the channel matrix has only one nonzero entry in each column then the channel is termed 

as “ loss-less channel”. True, because in this case H (X|Y) = 0 and I(X, Y) =H(X), i.e. the 

mutual information equals the source entropy. 

 

2) If the channel matrix has only one nonzero entry in each row (which necessarily should be a 

‘ 1’ ), then the channel is called “ deterministic channel”. In this case there is no ambiguity 

about how the transmitted symbol is going to be received although no decision can be made 
from the receiver end. In this case H (Y|X) =0, and I(X, Y) = H(Y).  

 

3) An “ Ideal channel” is one whose channel matrix has only one nonzero element in each row 

and each column, i.e. a diagonal matrix. An ideal channel is obviously both loss-less and 

deterministic. Lay man’s knowledge requires equal number of inputs and outputs-you 

cannot transmit 25 symbols and receive either 30 symbols or 20 symbols, there shall be no 

difference between the numbers of transmitted and received symbols. In this case  

 

I(X,Y) = H(X) =H(Y); and  H(X|Y) =H(Y|X) =0 

 

4) A “ uniform channel” is one whose channel matrix has identical rows ex cept for 

permutations OR identical columns except for permutations. If the channel matrix is square, 

then every row and every column are simply permutations of the first row.  

 
Observe that it is possible to use the concepts of “ sufficient reductions” and make the 

channel described in (1) a deterministic one. For the case (4) observe that the rows and 
columns of the matrix (Irreducible) are linearly independent. 

 

 

Additional Illustrations: 
 

Example 4.8: 
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Consider two identical BSC‘s cascaded as shown in Fig 4.10. Tracing along the transitions indicated 

we find: 
 

p (z1|x1) = p
2
 + q

2
 = (p + q) 

2
 – 2pq =(1 – 2pq) =  p(z  2|x2) and p(z1|x2) = 2pq = p(z2|x1) 

 

Labeling ˆp  1  2 pq , qˆ  2 pq it then follows that: 

 

I(X, Y) = 1 – H (q) =1 + p log p + q log q 

I(X, Z) = 1 – H (2pq) = 1 + 2pq log 2pq + (1 – 2pq) log (1 – 2pq). 
 

If one more identical BSC is cascaded giving the output (u1, u2) we have: 

I(X, U) = 1 – H (3pq 
2
 + p

3
) 

 

The reader can easily verify that I(X, Y)  I(X, Z)  I(X, U) 

 
Example 4.9: 

 
Let us consider the cascade of two noisy channels with channel matrices: 

 

        1 1 
0 

  
 

1 1 
 

2 
 

    

 

 
 

 2 2  
 

    
 

 

     

  1 
 

2 
  

 

  

6 6 3 
   

 

P( Y | X )   P( Z | Y )  0  , with p(x1) = p(x2) =0.5  

3 3 
 

  1  1  1       
 

  

4 
  

 

 

 

1 
 

2 
 

  

2  4 
0 

 
 

         

3 3 
  

 

            
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above cascade can be seen to be equivalent to a single channel with channel matrix: 
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5 5   4 
 

 

         

 

 

36   12   9 
 

P( Z | X )   
 

  1   1   1   

   

2 
    

3   6 
 

 
The reader can verify that: I(X, Y) = 0.139840072 bits / symbol. 

 

I(X, Z) = 0.079744508 bits / symbol. 
Clearly I(X, Y) > I(X, Z). 

 

Example 4.10: Let us consider yet another cascade of noisy channels described by: 

 
             

 

1 1  1 1 0 0  
 

 

     

  

 

2 1 
 

 

3 3   3 
 

 

P(Y | X )   P( Z | Y )   0    
 

 

    

 0  1  1    3 3   

2 
   

1 2 
 

   2  

0 
 

 

        

3 
   

 

          3 
  

The channel diagram for this cascade is shown in Fig 4.12. The reader can easily verify in this case 
that the cascade is equivalent to a channel described by: 

 

1 1 1  
 

 

     

 

 

     
 

P( Z | X )   
3 3 3  P(Y | X ) ; 

 

0  1  1   

2 2 
 

  
 

 
Inspite of the fact, that neither channel is noiseless, here we have I(X, Y) = I(X, Z). 
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Review Questions: 
 

1. What are important properties of the codes?  

 
2. what are the disadvantages of variable length coding?  

 
3. Explain with examples:  

4. Uniquely decodable codes, Instantaneous codes  

 
5. Explain the Shannon-Fano coding procedure for the construction of an optimum code  

 
6. Explain clearly the procedure for the construction of compact Huffman code.  

 
7. A discrete source transmits six messages symbols with probabilities of 0.3, 0.2, 0.2, 0.15, 0.1,   

0.5. Device suitable Fano and Huffmann codes for the messages and determine the average 
length and efficiency of each code.  

 
8. Consider the messages given by the probabilities 1/16, 1/16, 1/8, ¼, ½. Calculate H. Use the 

Shannon-Fano algorithm to develop a efficient code and for that code, calculate the average 
number of bits/message compared with H.  

 
9. Consider a source with 8 alphabets and respective probabilities as shown:  

A B  C  D E  F  G H 

0.20 0.18  0.15  0.10  0.08  0.05  0.02  0.01  
Construct the binary Huffman code for this. Construct the quaternary Huffman and code 

and show that the efficiency of this code is worse than that of binary code 

 

10. Define Noiseless channel and deterministic channel.  

 
11. A source produces symbols X, Y,Z with equal probabilities at a rate of 100/sec. Owing to 

noise on the channel, the probabilities of correct reception of the various symbols are as 

shown:  

P (j/i) X Y z 
    

X ¾ ¼ 0 

y ¼ ½ ¼ 

z 0 ¼ ¾ 
    

Determine the rate at which information is being received. 

 
12. Determine the rate of transmission l(x,y) through a channel whose noise characteristics is 

shown in fig. P(A1)=0.6, P(A2)=0.3, P(A3)=0.1  
 
 A1  0.5  B1 

 

       
 

 T     
 

    R   
 

    0.5   
 

 A2 0.5 B2   
 

     0.5  
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Unit – 4 
 

 

Syllabus:  
Channel coding theorem, Differential entropy and mutual information for continuous 
ensembles, Channel capacity Theorem. 6 Hours 

 
 
 
 
Text Books:  

Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 1996. 
Digital communication, Simon Haykin, John Wiley, 2003. 

 
 
 
 

 

Reference Books: 
ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007  
Digital Communications - Glover and Grant; Pearson Ed. 2nd Ed 2008 
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Unit – 4 
 
CONTINUOUS CHANNELS  

Until now we have considered discrete sources and discrete channels that pertain to a digital 

communication system (pulse code modulation). Although modern trend is to switch over to digital 

communications, analog communications can never become obsolete where amplitude and frequency 

modulations are used (Radio, television etc). Here the modulating signal X (t) (which is the set of 

messages to be transmitted from an information theoretical view point) is invariably a continuous 

speech or picture signal. This message can be treated as equivalent to a continuous sample space 

whose sample points form a continuum, in contrast to the discrete case. We shall define a continuous 

channel as one whose input is a sample point from a continuous sample space and the output is a 

sample point belonging to either the same sample space or to a different sample space. Further we 

shall define a’ zero memory continuous channel’ as the one in which the channel output statistically 

depends on the corresponding channels without memory. In what follows, we briefly discuss the 

definition of information and entropy for the continuous source, omitting the time dependence of the 

messages for brevity and conclude with a discussion of Shannon-Hartley law. 
 

 

Entropy of continuous Signals: (Differential entropy): 
 
For the case of discrete messages, we have defined the entropy as 
 

H ( S )  
q 1  

 

∑ p( sk )log  
……………………..  (5.1)  

  

 k 1 p( sk ) 
 

 
For the case of analog or continuous messages, we may wish to extend Eq. (5.1), considering the 

analog data to be made up of infinite number of discrete messages. However, as P(X = x) = 0 for a 
CRV, X, then direct extension of Eq. (5.1) may lead to a meaningless definition. We shall proceed as 

follows: 

 
Let us consider that the continuous source ‘ X’(a continuous random variable) as a limiting 

form of a discrete random variable that assumes discrete values 0, ±∆x, ±2∆x,…..,etc. Let k.∆x =xk, 

then clearly ∆xk = ∆x. The random variable X assumes a value in the range (xk, xk+∆x) with 

probability f (xk) × ∆xk, (recall that P{x ≤ X ≤ x+dx} = f(x).dx, the alternative definition of the p.d.f. of 

an r.v). In the limit as ∆xk → 0, the error in the approximation would tend to become zero. 
Accordingly, the entropy of the CRV, X, is given by, using Eq. (5.1), 
 

 

H ( X )  
 lim ∑ f ( xk )xk log 

1   
 

xk   0 

     

f ( xk )xk 
  

 

   k     
 

 lim     1     
 

 

xk  0 

∑ f ( xk )xk log    

 ∑ f ( xk )xk log xk 
 

   
 

 k  f ( xk )   k   
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As ∆xk 0 it follows: xk →x and f (xk) × ∆xk f(x) dx. The summation would be replaced by 
integration, and thus we have: 
 

H ( X )  
  1  

dx  
 lim 

log x 
   

 

∫ f ( x ) log      

k 

∫ f ( x )dx  
 

       

   f ( x ) xk   0    
 

   1    lim     
 

           

   ∫ f ( x ) log   dx  
x  0 

log x ………  (5.2)  

     

     f ( x )      
 

              

 

As ∆xk = ∆x, and the second integral in the RHS is unity (property of any density function). Notice 

that in the limit as ∆x → 0, log ∆x → ‘- ∞’ . Thus, it appears that the entropy of a continuous random 

variable is infinite. Indeed it is so. The amount of uncertainty associated with a continuous message is 
infinite – as a continuous signal assumes uncountab ly infinite values. Thus it seems there can be no 

meaningful definition of entropy for a continuous source (notice that we are using the words source, 

message and random variable interchangeably as we are referring to statistical data that is being 
generated by the transmitter). However, the anomaly can be solved if we consider the first term in the 

RHS of Eq. (5.2) as a relative measure while ‘-log ∆x’ serves as our reference. Since we will be 
dealing, in general, with differences in entropies (for example I(X, Y) = H(X) – H (X|Y) ), if we select 

the same datum for all entropies concerned, the relative measure would be indeed quite meaningful. 
However, caution must be exercised to remember that it is only a relative measure and not an 

absolute value. Otherwise, this subtle point would lead to many apparent fallacies as can be observed 
by the following example. In order to differentiate from the ordinary absolute entropy we call it ‘ 

Differential entropy’. We then define the entropy. H(X), of a continuous source as 

 
 

1 
   

 

H ( X ) ∫ f ( x ) log dx   bits / sample . ………………… (5.3)    

  

 f ( x )   
 

     

 
Where f(x) is the probability density function (p.d.f.) of the CRV, X. 
 
Example 5.1: Suppose X is a uniform r.v. over the interval (0, 2). Hence 
 

f(x) = 1 
… 0 ≤ x ≤ 2  

  

2   
 

= 0  Else where 
  

2  1 
Then using Eq. (5.3), we have H ( X )  ∫ log 2 dx  1bit / sample 

0  2 
 
Suppose X is the input to a linear amplifier whose gain = 4. Then the output of the amplifier would be 
Y = 4X. Then it follows f(y) = 1/8, 0 ≤ y ≤ 8. Therefore the entropy H(Y), of the amplifier output 

8
 1 

becomes H ( Y )  ∫ log 8 dy  3bits / sample 

0 

8
 

 
That is the entropy of the output is thrice that of the input! However, since knowledge of X uniquely 

determines Y, the average uncertainties of X and Y must be identical. Definitely, amplification of a 

signal can neither add nor subtract information. This anomaly came into picture because we did not 

bother about the reference level. The reference entropies of X and Y are:  
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Rx  
lim 

(  log x )  and Ry   
 lim 

 

x  
  (  log y ) 

 

  0   y  0 
 

  lim     
dy 

 
 

Rx  R y   x  0 (  log x  log y )  log  log 4  2bits / sample .  

 
 

  y  0    dx 
 

       
 

Clearly, the reference entropy of X, Rx is higher than that of Y, R y. Accordingly, if X and Y have 
equal absolute entropies, then their relative entropies must differ by 2 bits. We have: 
 

Absolute entropy of X = Rx + H(X) 

Absolute entropy of Y = Ry + H(Y) 
 

Since Rx = Ry + 2, the two absolute entropies are indeed equal. This conclusion is true for any reverse 
operation also. However, the relative entropies will be, in general, different. 
 
To illustrate the anomalies that one may encounter if the relative characterization of the entropy 
function is ignored we shall consider another example. 
 
Example 5.2: 
 
Suppose X is uniformly distributed over the interval (–1/4, 1/4) .Then 
 

f (x) = 2  …. -1/4 x  1/4 and ‘ 0’ else where. It then follows from Eq (5.3): 
 

1    
 

4  
1 

 
 

H ( X )  ∫ 2 log dx  log 2 1bit / sample .  

  

1 2  
 

4    
 

 
which is ‘negative’ and very much contradictory to our concept of information? 
 
Maximization of entropy:  

For the case of discrete messages we have seen that entropy would become a maximum when 
all the messages are equally probable. In practical systems, the sources, for example, radio 

transmitters, are constrained to either average power or peak power limitations. Our objective, then, is 
to maximize the entropy under such restrictions. The general constraints may be listed as below: 
 
   

1) Normalizing constraint: ∫ f ( x )dx  1 (Basic property of any density function) 
   

  M 

2) Peak value limitation: ∫ f ( x )dx  1 
   M 

   

3) Average value limitation ∫ x . f ( x )dx    E{ X } , is a constant. 
   

   

4) Average power limitation ∫ x 
2
 . f ( x )dx  m2   E{ X 

2
 } , is a constant. 

   
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5)  Average power limitation, with unidirectional distribution (causal systems whose response  
 

does not begin before the input is applied) ∫ x 
2
 . f ( x )dx   , a constant.  

0 
 

Our interest then is to find the p.d.f., f(x) that maximizes the entropy function H(X) defined in 

Eq. (5.3). The maximum entropy method (MEM) we are speaking of then is a problem of constrained 

optimization and is a particular case of the so-called isoperimetric problem of the calculus of 

variations. We shall adopt, here, the ‘Euler- Lagrange’s’ method of undetermined co-efficients to 

solve the problem on hand. Suppose, we wish to maximize the integral 

 

I  
b
∫( x . f )dx 

 
a 

 
Subject to the following integral constraints: 

 
b  

∫1 ( x , f )dx  1 
a  

b  
∫2 ( x , f )dx  2  
a  

 
M  
M  

b  
∫r ( x , f )dx  r 
a  

 
 
……… ………   (5.4)  

 
 
 
 
 
 
 
 
 

 
……… …………  (5.5) 

Where λ1, λ2… λr are pre-assigned constants. Then the form of f(x) that satisfies all the above 
constraints and makes ‘ I’ a maximum (or minimum) is computed by solving the equation  

1 1 2 2  ...  r 


r   0 ……………. (5.6) 

f f  f  f  
 

The undetermined co-efficients, α1, α2… αr are called the ‘Lagrangian multipliers’ (or simply, 

Lagrangians) are determined by substituting the value of f(x) in Eq (5.5) successively. (Interested 
reader can refer standard books on ‘ calculus of variations’ for such optimization problems).We shall 
consider the cases we have already listed and determine the p.d.f, f(x) of the random signal X for these 
cases. 
 

Since differentiation and integration of log f(x) is not possible directly, we convert it into 

logarithm to base ‘ e’ and proceed as below: 
 

log2f = log e. ln f = ln f 
a
 = ln f , where a=log e, a constant and eventually we will be finding f that 

maximizes Eq (5.7) or equivalently f, if we call H1(x) = - ∫ f(x) ln f(x) dx, then H(X) = (log e) H1(X). So 

if we maximize H1 (X), we will have achieved our goal. 
 
Case I: Peak Signal Limitation: 
 

Suppose that the signal is peak limited to ±M (Equivalent to peak power limitation, Sm, as in the case 

of AM, FM and Pulse modulation transmitters. For example in FM, we use limiting circuits as our 
concern is only on frequency deviation.). Then we have, 
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M 

H1 ( X )  ∫ f ( x ) log f ( x )dx ……….  (5.7)  
 M 

 
And the only constraint on f(x) being the unit area condition (property of a p.d.f) 
 

M 

 1 

    
 

∫ f ( x )dx  
……………………… (5.8) 

 

M      
 

Here (x, f) = -f ln f ⇒ 


 ( 1  ln f )    
 

  f    
 

1(x, f) = f ⇒ 


1 =1    
 

  f    
 

And from Eq. (5.6), we have     
 

1 


1   0  ……………… (5.9) 
 

f f     
 

⇒  - (1+ln f) +=0 ⇒ f=e 
-
 
(1-

 
)

 
………… ( 5.10) 

 

Substituting Eq (5.10) in Eq (5.8), we get e 
- (1-

 
)

 =1/2M =f(x) .Thus it follows 
 

f (x)= 1/2M ,  -M x  M  … ………….  (5.11) 
 

 
You will immediately identify Eq (5.11) as the uniform density function. Hence the entropy, under 
peak signal limitation condition, will become a maximum if and only if the signal has a rectangular or 

uniform distribution. The maximum value of entropy can be found by substituting Eq (5.11) in Eq 
(5.3) as: 
 

H(X) max=log2M bits/sample. ………….. (5.12) 
 

If Sm =M 
2
, then 2M= 

  
and H(X) max= 1 log4Sm bits/sample. 

  
 

4 Sm  ………… (5.13)  

  
 

  2     
 

Suppose the signal is  band  limited  to  ‘ B’  Hz and is  sampled  at the  “Nyquist  rate” i.e. 
 

r=2B samples/sec., then we have    
 

R(X) max=B log 4Sm bits/sec. ………………… (5.14)   
 

For the uniform distribution over (-M, M), we have    
 

Mean = 0, and Variance, 
2
 = (2M) 

2
/12 = M

2
/3    

 

 

Since the mean value is zero, the variance can be treated as the average power, S and since M 
2
 = 

Sm, it follows Sm= 3S and Eq (4.14) becomes: 
 

R(X) max=B log 12S  bits/sec …………………   ( 5.15) 

Case II Average Signal Limitation:   
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Suppose X has unidirectional distribution with a specified average value (For example: PAM, PLM 

or in AM with average carrier amplitude limitation), the constraint equations are: 
 

     

∫ f ( x )dx  1   ………………. (5.16a) 
0     

     

And   ∫ xf ( x )dx   ( say )   ………… ……….   (5.16b) 
0     

The equation to be solved now is 
1 


1   2 


2   0  

 f f f  

Where 1(x, f) = f  and 2(x, f) =x. f    

This leads tof  e 
( 1

1 2 x )   e ( 1
1 ) .e ax

 
…………….. (5.17) 

 

Where a = -2>0. This step is needed to make the integral converge as you will see later. 
 

Using Eq (5.17) in Eq (5.16a) gives e
-(1-1)

 =a. Substituting in Eq (5.17) back results in 
 

 f(x) = ae
-ax

 ………………. (5.18) 
 

Substituting Eq (5.18) in Eq (4.16b) gives a=1/  
 

Thus the p.d.f that maximizes H(x) is   
 

 1  1 x 
  

 

f ( x )  

   
 

 

e  


 , x>0 …………… (5.19) 
 

  

      
 

 
Which you will recognize as the exponential density function with parameter 1/.The maximum 

value of the entropy can be shown as: 
 

Hmax(X) = loge + log  =loge bits/sample. ……………………   (5.2 0) 
 
The rate of information transmission over a band width of ‘ B’, assuming the signal is sampled at the 

Nyquist rate (i.e. =2B samples/sec.) is: 
 

Rmax =2Blog e bits/sec. ……………………(5.21) 
 
Case III Average Power Limitation (Symmetrical Distribution): 
 

Examples are Random noise with specified variance, audio frequency telephony and similar 
situations. 
 
The constraint equations assuming zero mean value are now: 
 

   

∫ f ( x )dx  1 …………………………  ( 5.22a) 
   
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            
 

  ∫ x 
2
 . f ( x )dx   

2
     ………………………… (5.22b) 

 

           
 

Hence 1(x, f) = f  and 2(x, f) =x
2
. f       

 

Setting 
1 


1   2 

2
   0 , we get as a first solution:  

 

 f f f       
 

 f  e
( 1

1 


2 

x2
 

)
  e

( 1
1 

)
 .e

ax2
     ………………….. (5.23) 

 

Where we have set a= -2>0.Substituting Eq (5.23) in Eq (5.22a), the second solution is 
 

              
 

 f    a eax 
2     

……………… ..   (5.24)  

         

            
 

       
 

      
 

       

 x 
2
 
 

 
   

 

Use has been made of the formula  ∫e dx   (From properties of Gamma functions.)Final 
 

              
 

              

solution is obtained by substituting Eq (5.24) in Eq (5.22b) and converting the integral into the form 
of a Gamma integral. Thus we have: 
 

 
              

 
       

 2   a   ax 
2  2   a  2  ax 

2 2 -ax2  
 

∫ x 
 

. 
 

 

e 
 

dx   
 

 2 
 

 

 

∫ 
x 

 

e 
 

dx , as the integrand, x e 
 

, is an even function. 
 

 
 

  
 

   
 

            0       
 

                   
 

 

Letting y=ax
2
 and manipulating, this integral reduces to: 

 
               3       

 
 

 

 

 
 

 

    
 

1 
  1 


 
y
dy   

2
   

 

1 
   1 


 
y
dy  

 

1 
 

3 1 1 1 
    

         

 

∫ y  
2
e 

  

∫ y 
2
 e 

  

   

   

 

   

 

   

 

2 2 2 2  

 

a   a 
 

 a 
 

 
 

 0        0                 
 

Thus a = 1/2
2
 and the required density function is               

 

   
1 

   x 
2                       

 

     2 
2                       

 

 

f ( x )   
  

 

e 
             

……………… 

   

…. (5.25) 

 

  2                 
 

 

Eq (5.25) is the Gaussian or Normal density function corresponding to N (0, 
2
) and gives maximum 

entropy. We have: 
 

      

e x 
2 / 2 

2 

 
 

H ( X )max   ∫ f ( x ) log{  2 }dx 
 

             
 

         
 log e 

 
 

 log  2 ∫ f ( x )dx  ∫ x2 f ( x )dx 
 

      

  
2 

2 
 

             

             

 1 log 2 
2
  1 log e  1 log 2e 

2
 bits / sample  

    

2  2    2    
 

 
In simplifying the integral (not evaluating) use is made of Eq (5.22a) and Eq (5.22b). Thus: 
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H(X) max = (1/2) log (2e
2
) bits/sample. ……………… (5.26) 

 
The rate of information transmission over a band width of ‘ B’ assuming the signal is sampled at the 

Nyquist rate (i.e. =2Bsamples/sec.) is: 
 

R(X) max = B log (2e
2
) bits/sec. ………………(5.27) 

 

Since ‘ 
2
’ represents the signal power, S, Eq (5.27) can also be expressed as below: 

 

R(X) max = B log (2e S) bits/sec ……………  (5.28) 
 

If ‘ X’ represents white Gaussian noise ( WGN), with an average power 
2
=N, Eq (4.28) becomes: 

 

 R(X) max = B log (2e N) bits/sec …………   (5.29) 

Case IV: Average Power Limitation (Unidirectional Distribution): 

If the signal X has a unidirectional distribution with average power limitation (AM with 

average carrier power constraint), the constraint equations become:  

    

∫ f ( x )dx  1 , and ∫ x 
2
 . f ( x )dx  P0  

  0  

 
Then following the steps, as in other cases, you can show that: 

 

f ( x )  
2    

 x 2  
 

   

exp  

, 0 x   

P 
  

    
2 P

0 
 

  0      
 

 
 

1 eP0  
 

H ( X )max 
  

log   

bits/sample  

2 2 
 

 

     
 

    eP0  
 

R( X )max  B log 
2 

 bits/sec. 
 

       
 

 
 

…………… (5.30)  

 
 
 
 

……………….. (5.31) 
 
 
 
 
……………… (5.32) 

 
Compared to Eq (5.28), it is clear that the entropy in Eq (5.32) is smaller by 2 bits/sec. 

 

NOTE: In case III we have shown that the entropy of Gaussian signals is log 2e 
2
  log 2eS , 

where ‘ S’ is the signal power and is maximum among all p.d.f `s of continuous signals with average 
power limitation. Often times, for the calculation of the transmission rate and channel capacity, it is 
convenient to find equivalent entropy of signals and interference which are neither random nor Gaussian. 

We define “ Entropy Power” Se of an ensemble of samples limited to the same band width, B, and period 

T as the original ensemble, and having the same entropy H bits/sample. Then  

H/sample= log 2eSe  .Therefore Se =e
2H

/2e. Since H for a random signal is maximum for a given  

S when it is Gaussian, then Se for any arbitrary signal is less than or equal to the average power of the 
signal. 

 

Mutual Information of a Continuous Noisy Channel: 
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While remembering that the entropy definition for continuous signals is a relative one and using 

the logarithmic property, it follows that all entropy relations that we have studied for discrete signals 

do hold for continuous signals as well. Thus we have 
 
 

H ( X ,Y )  
 
 
 

H ( X | Y )  
 
 
The mutual information is 
 
 
 
 
 
 
The channel capacity is 

 
 

  1     
 

∫ ∫ f ( x , y ) log  dxdy  ……   (5.33)     

   f ( x , y )   
 

  1     
 

∫ ∫ f ( x , y ) log   dxdy  ………(5.34)  

   
 

   f ( x | y )   
 

I(X, Y) = H(X) – H (X|Y)   …………… (5.35) 
 

 = H(Y) - H (Y|X)   ……………. (5.36) 
 

= H(X) + H(Y) – H(X, Y)   …………. (5.37) 
 

  C = Max I(X, Y)   ……………. (5.38) 
 

 
And so on. You can easily verify the various relations among entropies. 
 
Amount of Mutual Information: 
 

Suppose that the channel noise is additive, and statistically independent of the transmitted 
signal. Then, f (y|x) depends on (y-x), and not on x or y. Since Y=X+n, where, n is the channel noise, 

and f (y|x) = fY (y|X=x). 
 
It follows that when X has a given value, the distribution of Y is identical to that of n, except for a 

translation of X. If fn (.) represents the p.d.f. of noise sample, n, then obviously fY (y|x) = fn(y-x) 
 
  1   1  

 

 
∫ 

 

dy  ∫ fn ( y  x ) log 
 

 

 

fY ( y | x ) log    dy  

 

fY ( y | x ) 

 
 

    fn ( y  x ) 
 

Letting z = y – x , we have then      
 

     
1 

   
 

 
H ( Y | x )  ∫ fn ( z ) log 

 
dz  H ( n ) 

  
 

      

     
 

    fn ( z )   
 

Accordingly,         
 

       
 

H ( Y | X )  ∫ f X ( x )H ( Y | x )dx  ∫ f X ( x )H ( n )dx  H ( n ) ∫ f X ( x )dx  H ( n ) 
 

       
 

Or H (Y|X) =H (n)   …………… … (5.39) 
 

There fore, the amount of mutual information =H(Y) – H (Y|X)   
 

  That is, I(X, Y) =H(Y) – H (n) ……. (5.40) 
 

The equivocation is H (X|Y) = H(X) – I(X, Y) = H(X) – H(Y) + H (n) …… (5.41) 
 

Since the Channel capacity is defined as      
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C = R max =2B I(X, Y) max bits/sec. =[R(Y) – R (Y|X)] max  

It follows:  C = [R(Y) – R (n)] max …………… …….. (5.42) 
 
 

 

Capacity of band limited channels with AWGN and Average Power 
 

Limitation of signals: The Shannon – Hartl ey law: 
 
 
 
 
 
 
 
 
 
 
 

 

Consider the situation illustrated in Fig. 5.1. The received signal will be composed of the 
transmitted signal X plus noise ‘ n’. The joint entropy at the transmitter end, assuming signal and 

noise are independent, is: 
 

H(X, n) = H(X) + H (n|X). 
 

= H(X) + H (n) ………………(5.43) 
 
The joint entropy at the receiver end, however, is 
 

H(X, Y) = H(Y) + H (X|Y) …………… (5.44) 
 
Since the received signal is Y = X + n, and the joint entropy over the channel is invariant, it follows: 
 

H (X, n) = H (X, Y) …………… (5.45) 
 
The, from Eq. (5.43) and Eq (5.44), one obtains 
 

I (X, Y) = H (X) – H ( X | Y) 
 

= H (Y) - H (n) ………………(5.46) 
 

Alternatively, we could have directly started with the above relation in view of Eq. (5.40). 
Hence, it follows, the channel capacity, in bits / second is: 
 

C = {R(Y) – R (n)} max …………….   (5.47) 
 

If the additive noise is white and Gaussian, and has a power ‘ N’ in a bandwidth of ‘ B’ Hz, 

then from Eq. (5.29), we have: 
 

R (n) max = B log 2eN ………………… (5.48) 

 
Further, if the input signal is also limited to an average power S over the same bandwidth, and X and 
n are independent then it follows: 
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σY
2
 = (S + N) 

 
We have seen that for a given mean square vale, the entropy will become a maximum if the signal is 
Gaussian, and there fore the maximum entropy of the output is: 
 

H (Y) max = (1/2) log 2πе (S + N) bits/sample 
 

Or, R (Y) max = B log 2πе (S + N) bits/sec ………(5.49) 
 
 

 

If ‘ n’ is an AWGN, then Y will be Gaussian if and only if, X is also Gaussian. This implies 

 
 

( x )  
1  

 
x 2  

 

f X exp  

 

 

2 

  
 

    2 S 
 

Using Eq. (5.48) and (5.49) in Eq. (5.47), one obtains 
 

  S  
 

C  B log  1   bits/sec ……………(5.50)    

  
N

  
 

Or, C = B log (1 + Λ) bits/sec ……………(5.51) 
 

 
Where, Λ = S/N, is the signal to noise power ratio. 
 

This result (Eq. 5.50) is known as “ Shannon-Hartley law”. The primary significance of the 

formula is that it is possible to transmit over a channel of bandwidth B Hz perturbed by AWGN at a 

rate of C bits/sec with an arbitrarily small probability of error if the signal is encoded in such a 

manner that the samples are all Gaussian signals. This can, however, be achieved by Orthogonal 

codes. 
 
Bandwidth – SNR Tradeoff: 
 

One important implication of the ‘Shannon - Hartley Law’ is the exchange of bandwidth with 

signal to noise power ratio. Suppose, S/N = 7, and B = 4KHz then from Eq. (4.50), C = 12000 bits/sec. 

Let S/N be increased to 15, while the bandwidth is reduced to 3 KHz. We see that the channel capacity 

remains the same. The Power Spectral Density, Sn(f), of White Gaussian noise is more or less a constant 

over the entire frequency range,(-, ), with a two sided p.s.d of N0/2 as shown in Fig 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the figure we find the noise power over (-B, B) as N = N0 / 2 .2B  or 
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N = N0B …………………(5.52) 
 
That is, the noise power is directly proportional to the band width B. Thus the noise power will be 

reduced by reducing the band width and vice-versa. This indicates, then, an increase in the signal 

power and vice-versa. For illustration consider the following: 
 

With  
S1

  =7 and B1 = 4 KHz, we have from Eq (5.50) C = 12000 bits/sec. 

N1 
 
Suppose we decrease the band width by 25% and choose the new values of SNR and band width as 
S2

  =15 and B2 = 3 KHz, we get the same channel capacity as before. 

N 2 
 

Then 
S1

   
S2

  =7/15 

N1 N 2 
 
Using Eq (5.52), this means 
 

S1 
= 7 . 

B1 
 7 . 4  28  0.62222 or S2 = 45 S1 = 1.607 S1  

S2 15 B2 
    

 

  15 3 45  28  
 

 
Thus a 25 % reduction in bandwidth requires a 60.7 % increase in signal power for 

maintaining the same channel capacity. We shall inquire into this concept in a different way. Eq. 

(5.50) can be written in the form: 
 

B  
 

S 
 1 

  
 

 log  1  

 ………………( 5.53)  

C 
  

  N    
 

 
Table below shows the variation of (B/C) with (S/N) 

 
           

S/N 0.5 1 2 5 10 15 20 30   
A plot of (B/C) versus (S/N ) is shown in Fig 5.4. Clearly, the same channel capacity may be obtained 

B/C 1.71 1.0 63 0.37 0.289 0.25 0.23 0.20   
            

increasing S/N is poor. Use of larger band width for smaller S/N is generally known as “ coding 

upwards” and use of smaller B with larger S/N is called “ coding downwards”. One can consider as 

examples of coding upwards, the FM, PM and PCM systems where larger band widths are used with 

improvements in S/N ratio. Quantization of the signal samples and then, combining the different sample 

values into a single pulse, as in the case of multi-level, discrete PAM can be considered as an example of 

coding downwards where the band width reduction depends on the signal power available. 
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For wide band systems, where (S/N)  1, use of Eq (5.50) leads to: 
 

 
C  B1 log 

    S1  
 B2 

     
 

 S2    
 

 
 

   
 

   
 1   

  
 

             

 1   

N 
  log  

N 
     

 

              1            2   
 

                       B1            
 

     

 
 S2   

 
  

 
 S1   B2            

 

 

or  1 
  

  1 
 

 
              

 

                     

        

N 

                
 

        
N

 2      1               
 

            
B

1                         
 

 S 
2     S 

1  
B

2        S 
1      S 

2      
 

     
 

   
 

            
 

          
 

Or             , when   and     1 ……………… (5.54)  

N 2 

   

N 1 

           

                N 1    N 2   
 

 
Notice that Eq. (5.54) predicts an exponential improvement in (S/N) ratio with band width for an 

ideal system. For the conventional demodulation methods used in FM and PM, however, the (S/N) 

ratio varies as the square of the transmission bandwidth, which, obviously, is inferior to the ideal 

performance indicated by Eq. (5.54). However, better performance that approaches the Shannon-

bound in the limit as bandwidth is made infinite, can be obtained by using optimum demodulators 

(Phase-locked loop). 
 
 

 

Capacity of a Channel of Infinite Bandwidth: 
 

The Shannon-Hartley formula predicts that a noiseless Gaussian channel with (S/N = ∞) has 

an infinite capacity. However, the channel capacity does not become infinite when the bandwidth is 

made infinite, in view of Eq. (5.52). From Eq. (5.52), Eq. (5.50) is modified to read: 
 
 

C  
 
 

 
 
 

 
 
 
 

Or C  

 
 

      
 

 S      
 

  
  1    

 bits / sec .  

      

B log      

        
N

0 

B
    

 

 S  N0 B     
 

S  
 

       
 

  

.      

log 1  

 

 

 

N0 

      
 

    S      
N

0 

B
 

 

 S . 1 log1  x  .... Where x   

 

N0 
  

  x         
 

 
1 

S
 log1  xx N0 

 
 
 
 
 
 
 
 
 

S  

N0 B 
 
 

………………(5.55) 
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Accordingly, when B, x 0 and we have 
 

   

  lim 
 

S 
   

lim 
1    

 

 C
max C  

 

log 1  x  
 

 ……………. (5.56) 
 

  

x  

 

N0 
   

 

   B     x  0     
 

Since lim 1  x
1

 x  e


 and log e  1.442685 , we have   
 

 x  0              
 

   Cmax  1.442685 S  bits/sec …………… (5.57)  
     

 

        N0      
 

 
Eq (5.57) places an upper limit on channel capacity with increasing band width. 
 
Bandwidth-Efficiency: Shannon Limit: 
 

In practical channels, the noise power spectral density N0 is generally constant. If Eb is the 
transmitted energy per bit, then we may express the average transmitted power as: 
 

S = Eb C …………… 
 
Using Eq. (5.52) and (5.58), Eq. (5.50) may now be re-formulated as: 
 

C   
 Eb  C   

 

 1 .  ………………  

    

  log 

N0 

   

B     B  
 

 
 
From which one can show: 

 

E b  C  C  
 

 

 2 B
  1   

 ………  

N0 
 

 

    B  
 

 
.. (5.58) 
 
 
 

 

.  (5.59) 
 
 
 
 
 
 
 

 
……… (5.60) 

 

(C/B) is called the “bandwidth efficiency” of the syste m. If C/B = 1, then it follows that Eb = N0.This 

implies that the signal power equals the noise power. Suppose, B = B0 for which, S = N, then Eq. 
(5.59) can be modified as: 
 

C 
 

B  
 

B    
 

  log  1 0 
 … (5.61)  

B0 B0 B 
 

      
 

 

lim  C  
 

1 
 lim 

 

 
B0  

B  
1 

 
B0 

 
 

 
 

 
 

 
 

 log e 
 

       
 

And  

B0 

  log  1    

B0 

log e   

B     B0 B    B      
 

 C max =B0 log e             ……………  (5.62) 
 

 
That is, “ the maximum signaling rate for a given S is 1.443 bits/sec/Hz in the bandwidth over which the 

signal power can be spread without its falling below the noise level”. 
 
It follows from Eq. (5.58): 
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     S = Eb C =N0B0  or Eb/N0 =B0/C      
 

And  as   B   ,  we have And as B , we have 
 

lim  E 
b   lim B   B   B       

 

 

 

 

  
 

 

0 
  

0  

 
0  

 ln 2 
     

 

B  

  

B  C 
C

max 

 

B0 log e 

     
 

 
N

0             
 

 
 

   Eb  
 ln 2  0.69314718 

 
 

In other words  

 
……………  (5.63)  

 
 

   
N

0 min   
 

Expressed in decibels, this means:  
 

Eb  
 10 log 0.69314718 dB 1.59174539 dB ……………… (5.64)  

 

 

 

 

 
 

N
0 min      

  

 Eb  
1.592 dB  is known as the “ Shannon` s limit” for transmission at capacity  

The value  
 

 

  N
0 min  

 

Cmax=1.443S/N0 and the communication fails otherwise (i.e.Eb/N0 <0.693.). 
 
We define an “ideal system” as one that transmits d ata at a bit rate R equal to the channel capacity. 

Fig 5.5 shows a plot of the bandwidth efficiency, R / B = C/B = ηb, as a 
 

function of the “energy-per-bit to noise power spec tral density ratio” Eb/N0. Such a diagram is called 
“bandwidth efficiency diagram”. Clearly shown on th e diagram are: 
 

 The capacity boundary defined by the curve R = C. 


 Region for which R > C shown as dark gray area for which error-free transmission is not possible. 


 Region for which R < C (light gray portion) in which combinations of system-parameters have 
the potential for supporting error-free transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 5.3 
 
A vice-grade channel of a telephone network has a bandwidth of 3.4 kHz. 
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a) Calculate the channel capacity of the telephone channel for a signal to noise ratio of 30dB.  
 

b) Calculate the minimum signal to noise ratio required to support information transmission 
through the telephone channel at the rate of 4800 bits/sec.  

 
c) Solution:  

 
a)  B = 3.4kHz, S/N = 30dB 

 

[S/N] dB =10 log10[S/N] Abs   (Remember S/N is a Power ratio) 
 

 S/N =10
{[S/N] dB/10}

 =10
3
 =1000 

 

C =B log 2{1+ S/N} =33888.56928 bits/sec 
 

b) C = 4800, B =3.4 kHz and S/N = (2
C/B

 -1) = 1.660624116 or 2.2 dB 
 
 
 
 
 
 
Example 5.4 
 
A communication system employs a continuous source. The channel noise is white and Gaussian. The 
bandwidth of the source output is 10 MHz and signal to noise power ratio at the receiver is 100. 
 

a) Determine the channel capacity  
 

b) If the signal to noise ratio drops to 10, how much bandwidth is needed to achieve the same 
channel capacity as in (a).  

 
c) If the bandwidth is decreased to 1MHz, what S/N ratio is required to maintain the same 

channel capacity as in (a).  
 
Solution: 
 

a) C =  10
7
 log (101) = 6.66  10

7
 bits/sec  

 

b) B = C / log2 (1+ S/N)=C/log211=19.25 MHz  
 

c) S/N =(2
C/B

 -1)=1.10510
20

 =200.43dB  
 
Example 5.5: 
 
Alphanumeric data are entered into a computer from a remote terminal though a voice grade 
telephone channel. The channel has a bandwidth of 3.4 kHz and output signal to noise power ratio of 
20 dB. The terminal has a total of 128 symbols which may be assumed to occur with equal 
probability and that the successive transmissions are statistically independent. 
 

a) Calculate the channel capacity:  
 

b) Calculate the maximum symbol rate for which error-free transmission over the channel 
is possible.  
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Solution: 
 

a)  S/N = 10
20/10

 = 10
2
 = 100 

 

C = 3.4 x 10
3
 log 2 (1 + 100) = 22637.92 bits/sec 

 

b) H max = log2 128 = 7 bits per symbol  
 

C = rs max. Hmax  
 

Therefore, rs max = C/Hmax = 3233.99 bits/sec = 3.234 kb/sec  
 
Example 5.6 
 
A  black and  white television  picture may be  viewed  as  consisting  of  approximately 3 

x10
5
elements, each one of which may occupy one of 10 distinct brightness levels with equal 

probability. Assume the rate of transmission to be 30 picture frames per second, and the signal to 
noise power ratio is 30 dB. 
 
Using the channel capacity theorem, calculate the minimum bandwidth required to support the 
transmission of the resultant video signal. 
 
Solution: 
 

(S/N) dB=30 dB or (S/N) Abs=1000 
 

No. of different pictures possible = 10
3 x105

 
 

Therefore, entropy per picture =3 x 10
5
 log 210 = 9.965784285 x 10

5
 bits 

 

Entropy rate = rs. H = 30 x H = 298.97 x 10
5
 bits/sec 

 

C= rs. H=B log2 [1+S/N] 
 

Bmin= rs. HB log2 [1+S/N] =3.0 MHz 
 
Note: As a matter of interest, commercial television transmissions actually employ a bandwidth of 4  
MHz. 
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Review questions:  

1. Show that for a AWGN channel C   1.448 where /2 = noise power spectral density in 
   

watts/Hz.    

2. Consider  an AWGN  channel  with  4  KHz  bandwidth  with  noise  power  spectral  density 

  1012 watts/Hz.  The signal  power  required  at  the receiver  is  0.1mW.  Calculate the 
2    

capacity of the channel. 
 

3. If I(xi, yi) = I(xi)-I(xi/yj). Prove that I(xi,yj)=I(yj)-I(yj/xi)  
 
 
 
 

4. Consider a continuous random variable having a distribution as given below   
 1 

0  X  A  

5. 
 

 

 

 

  

FX(X)   A  
 

   
 

0 OTHERWISE  
6. Find the differential entropy H(x)  

 
7. Design a single error correcting code with a message block size of 11 and show that by an 

example that it can correct single error.  
 

8. If Ci and Cj an two code vectors in a (n,k) linear block code, show that their sum is also a code 

vector.  
 

9. Show CH
T

=0 for a linear block code.  

 
10. Prove that the minimum distance of a linear block code is the smallest weight of the non-zero 

code vector in the code.  

 
. 
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PART B 

 

UNIT 5 

 

CONCEPTS OF ERROR CONTROL CODING -- BLOCK CODES 
 
 
 
 
 

 

Syllabus:  
Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix 
description, Error detection and correction, Standard arrays and table look up for decoding.  

7 Hours 
 
 
 
 
 
 
 
 

Text Books:  
Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 
1996. Digital communication, Simon Hay kin, John Wiley, 2003. 

 

 

Reference Books: 
ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007  
Digital Communications - Glover and Grant; Pearson Ed. 2nd Ed 2008 
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UNIT 5 

 

CONCEPTS OF ERROR CONTROL CODING -- BLOCK CODES 

 
The earlier chapters have given you enough background of Information theory and Source 

encoding. In this chapter you will be introduced to another important signal - processing operation, 

namely, “ Channel Encoding”, which is used to provide ‘reliable’ transmission of information over 

the channel. In particular, we present, in this and subsequent chapters, a survey of ‘Error control 

coding’ techniques that rely on the systematic addition of ‘Redundant’ symbols to the transmitted 

information so as to facilitate two basic objectives at the receiver: ‘Error- detection’ and ‘Error 

correction’. We begin with some preliminary discussions highlighting the role of error control 

coding. 

 

5.1 Rationale for Coding: 

 
The main task required in digital communication is to construct ‘cost effective systems’ for 

transmitting information from a sender (one end of the system) at a rate and a level of reliability that 
are acceptable to a user (the other end of the system). The two key parameters available are 
transmitted signal power and channel band width. These two parameters along with power spectral 

density of noise determine the signal energy per bit to noise power density ratio, Eb/N0 and this ratio, 
as seen in chapter 4, uniquely determines the bit error for a particular scheme and we would like to 

transmit information at a rate RMax = 1.443 S/N. Practical considerations restrict the limit on Eb/N0 
that we can assign. Accordingly, we often arrive at modulation schemes that cannot provide 

acceptable data quality (i.e. low enough error performance). For a fixed Eb/N0, the only practical 
alternative available for changing data quality from problematic to acceptable is to use “coding”. 
 

Another practical motivation for the use of coding is to reduce the required Eb/N0 for a fixed 

error rate. This reduction, in turn, may be exploited to reduce the required signal power or reduce the 
hardware costs (example: by requiring a smaller antenna size). 

 
The coding methods discussed in chapter 5 deals with minimizing the average word length of 

the codes with an objective of achieving the lower bound viz. H(S) / log r, accordingly, coding is 
termed “entropy coding”. However, such source codes cannot be adopted for direct transmission over 

the channel. We shall consider the coding for a source having four symbols with probabilities p (s1) 

=1/2, p (s2) = 1/4, p (s3) = p (s4) =1/8. The resultant binary code using Huffman’s procedure is: 
 

s1……… 0 s 3…… 1 1 0 

s2……… 10 s 4…… 1 1 1 
 

Clearly, the code efficiency is 100% and L = 1.75 bints/sym = H(S). The sequence s3s4s1 will 
then correspond to 1101110. Suppose a one-bit error occurs so that the received sequence is 0101110. 

This will be decoded as “ s1s 2s4s1”, which is altogether different than the transmitt ed sequence. 
Thus although the coding provides 100% efficiency in the light of Shannon’s theorem, it suffers a 
major disadvantage. Another disadvantage of a ‘ variable length’ code lies in the fact that output data 
rates measured over short time periods will fluctuate widely. To avoid this problem, buffers of large 
length will be needed both at the encoder and at the decoder to store the variable rate bit stream if a 
fixed output rate is to be maintained. 

 

Some of the above difficulties can be resolved by using codes with “ fixed length”. For 

example, if the codes for the example cited are modified as 000, 100, 110, and 111. Observe that even 

if there is a one-bit error, it affects only one “ block” and that the output data rate will not fluctuate. 
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The encoder/decoder structure using ‘ fixed length’ code words will be very simple compared to the 

complexity of those for the variable length codes. 

 
Here after, we shall mean by “ Block codes”, the fixed length codes only. Since as discussed 

above, single bit errors lead to ‘ single block errors’, we can devise means to detect and correct these 

errors at the receiver. Notice that the price to be paid for the efficient handling and easy 

manipulations of the codes is reduced efficiency and hence increased redundancy. 

 

In general, whatever be the scheme adopted for transmission of digital/analog information, the 

probability of error is a function of signal-to-noise power ratio at the input of a receiver and the data 

rate. However, the constraints like maximum signal power and bandwidth of the channel (mainly the 

Governmental regulations on public channels) etc, make it impossible to arrive at a signaling scheme 

which will yield an acceptable probability of error for a given application. The answer to this problem 

is then the use of ‘ error control coding’, also known as ‘ channel coding’. In brief, “error control 
coding is the calculated addition of redundancy” . The block diagram of a typical data transmission 

system is shown in Fig. 6.1 

 
The information source can be either a person or a machine (a digital computer). The source 

output, which is to be communicated to the destination, can be either a continuous wave form or a 
sequence of discrete symbols. The ‘ source encoder’ transforms the source output into a sequence of 
binary digits, the information sequence u. If the source output happens to be continuous, this involves 
A-D conversion as well. The source encoder is ideally designed such that (i) the number of bints per unit 

time (bit rate, rb) required to represent the source output is minimized (ii) the source output can be 

uniquely reconstructed from the information sequence u. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ‘ Channel encoder’ transforms u to the encoded sequence v, in general, a binary 

sequence, although non-binary codes can also be used for some applications. As discrete symbols are 

not suited for transmission over a physical channel, the code sequences are transformed to waveforms 

of specified durations. These waveforms, as they enter the channel get corrupted by noise. Typical 

channels include telephone lines, High frequency radio links, Telemetry links, Microwave links, and 

Satellite links and so on. Core and semiconductor memories, Tapes, Drums, disks, optical memory 

and so on are typical storage mediums. The switching impulse noise, thermal noise, cross talk and 

lightning are some examples of noise disturbance over a physical channel. A surface defect on a 

magnetic tape is a source of disturbance. The demodulator processes each received waveform and 

produces an output, which may be either continuous or discrete – the sequence r. The channel 

decoder transforms r into a binary sequence,  u
ˆ

 which gives the estimate of u, and ideally should be 
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the replica of u. The source decoder then transforms uˆ into an estimate of source output and delivers 

this to the destination. 

 
Error control for data integrity may be exercised by means of ‘ forward error correction’ 

(FEC) where in the decoder performs error correction operation on the received information 

according to the schemes devised for the purpose. There is however another major approach known 

as ‘ Automatic Repeat Request’ ( ARQ), in which a re-transmission of the ambiguous information is 

effected, is also used for solving error control problems. In ARQ, error correction is not done at all. 

The redundancy introduced is used only for ‘ error detection’ and upon detection, the receiver 

requests a repeat transmission which necessitates the use of a return path (feed back channel). 

 
In summary, channel coding refers to a class of signal transformations designed to improve 

performance of communication systems by enabling the transmitted signals to better withstand the 
effect of various channel impairments such as noise, fading and jamming. Main objective of error 

control coding is to reduce the probability of error or reduce the Eb/N0 at the cost of expending more 

bandwidth than would otherwise be necessary. Channel coding is a very popular way of providing 
performance improvement. Use of VLSI technology has made it possible to provide as much as 8 – 
dB performance improvement through coding, at much lesser cost than through other methods such as 
high power transmitters or larger Antennas. 

 
We will briefly discuss in this chapter the channel encoder and decoder strategies, our major 

interest being in the design and implementation of the channel ‘ encoder/decoder’ pair to achieve fast 

transmission of information over a noisy channel, reliable communication of information and 
reduction of the implementation cost of the equipment. 
 

 

5.2 Types of errors: 

 

The errors that arise in a communication system can be viewed as ‘ independent errors’ and ‘ 

burst errors’. The first type of error is usually encountered b y the ‘ Gaussian noise’, which is the 

chief concern in the design and evaluation of modulators and demodulators for data transmission. The 

possible sources are the thermal noise and shot noise of the transmitting and receiving equipment, 

thermal noise in the channel and the radiations picked up by the receiving antenna. Further, in 

majority situations, the power spectral density of the Gaussian noise at the receiver input is white. 

The transmission errors introduced by this noise are such that the error during a particular signaling 

interval does not affect the performance of the system during the subsequent intervals. The discrete 

channel, in this case, can be modeled by a Binary symmetric channel. These transmission errors due 

to Gaussian noise are referred to as ‘ independent errors’ ( or random errors). 

 

The second type of error is encountered due to the ‘ impulse noise’, which is characterized by 

long quiet intervals followed by high amplitude noise bursts (As in switching and lightning). A noise 

burst usually affects more than one symbol and there will be dependence of errors in successive 

transmitted symbols. Thus errors occur in bursts 

 

5. 3 Types of codes: 

 

There are mainly two types of error control coding schemes – Block codes and convolutional 
codes, which can take care of either type of errors mentioned above.  

In a block code, the information sequence is divided into message blocks of k bits each, 

represented by a binary k-tuple, u = (u1, u2 …. uk) and each block is called a message. The symbol u, 
here, is used to denote a k – bit message rather than the entire information sequence . The encoder  
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then transforms u into an n-tuple v = (v1, v2 …. vn). Here v represents an encoded block rather than the 

entire encoded sequence. The blocks are independent of each other. 

 
The encoder of a convolutional code also accepts k-bit blocks of the information sequence u 

and produces an n-symbol block v. Here u and v are used to denote sequences of blocks rather than a 

single block. Further each encoded block depends not only on the present k-bit message block but also on 

m-pervious blocks. Hence the encoder has a memory of order ‘ m’. Since the encoder has memory, 

implementation requires sequential logic circuits. 

 
If the code word with n-bits is to be transmitted in no more time than is required for the 

transmission of the k-information bits and if τb and τc are the bit durations in the encoded and coded 
words, i.e. the input and output code words, then it is necessary that 

n.τc = k.τb 

 

We define the “ rate of the code” by (also called rate efficiency) 

 

Rc  
k

 

n 

Accordingly, with  f 
b 


1
 and  f 

c 


1
 , we have fb  c  k  R  

    

  
b 

 
c fc     b 

 
n 

c 
 

       
 

 
5.4 Example of Error Control Coding: 

 

Better way to understand the important aspects of error control coding is by way of an 

example. Suppose that we wish transmit data over a telephone link that has a useable bandwidth of 4 
KHZ and a maximum SNR at the out put of 12 dB, at a rate of 1200 bits/sec with a probability of error 

less than 10
-3

. Further, we have DPSK modem that can operate at speeds of 1200, 1400 and 3600 bits/sec 

with error probabilities 2(10
-3

), 4(10
-3

) and 8(10
-3

) respectively. We are asked to design an error 

control coding scheme that would yield an overall probability of error < 10
-3

. We have: 
 

C = 16300 bits/sec, Rc = 1200, 2400 or 3600 bits/sec. 
 

[C=Blog2 (1+ 
S

 ). 
S

   12dB or 15.85 , B=4KHZ], p = 2(10
-3)

, 4(10
-3

) and 8(10
-3

) respectively.  Since 

N N  
Rc < C, according to Shannon’s theorem, we should be able to transmit data with arbitrarily small 
probability of error. We shall consider two coding schemes for this problem. 
 

 

1.  Error detection: Single parity check-coding. Consider the (4, 3) even parity check code. 
 

 
         

Message 000 001 010 011 100 101 110 111 

Parity 0 1 1 0 1 0 0 1 

Codeword 0000 0011 0101 0110 1001 1010 1100 1111 
         

 
Parity bit appears at the right most symbol of the codeword.  
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This code is capable of ‘ detecting’ all single and triple error patterns. Data comes out of the channel 

encoder at a rate of 3600 bits/sec and at this rate the modem has an error probability of 8(10
-3

). The 
decoder indicates an error only when parity check fails. This happens for single and triple errors only. 
 

pd = Probability of error detection. 
 

= p(X =1) + p(X = 3), where X = Random variable of errors. 
 

Using binomial probability law, we have with p = 8(10
-3

):  

n 
 p )n k  

P(X = k) = p
k
 ( 1 

 

   
 

k
  

 

p 
 4 

 p )
3
 
 4 

( 1  p ), 
4 

 4C 
  4 

 4C 
 
 4   p( 1  p

3  
1  4 ,  

3  

d              
 

  1   3   
1

    3    
 

Expanding we get  pd   4 p  12 p
2
  16 p

3
  8 p

4
 

 
Substituting the value of p we get: 
 

pd = 32 (10
-3

) - 768 (10
-6

) +8192 (10
-9

) – 32768  (10
-12

) = 0.031240326 > > (10
-3

) 
 
However, an error results if the decoder does not indicate any error when an error indeed has 

occurred. This happens when two or 4 errors occur. Hence probability of a detection error = pnd 
(probability of no detection) is given by: 
 

p 
  4  

( 1 
4  

( 1  p )
0
  6 p

2
  12 p

3
  7 p

4
  

nd  P( X  2 )  P( X  4 )   p
2  p )

2
  p

4 
 

  

2 

       
 

     
4

     
 

Substituting the value of p we get pnd=0.410
-3

  10
-3

     
 

 

Thus probability of error is less than 10
-3

 as required. 
 
 

 

2. Error Correction: The triplets 000 and 111 are transmitted whenever 0 and 1 are inputted. A 
majority logic decoding, as shown below, is employed assuming only single errors.  

 

 
          

Received 000 001 010 100 011 101 110 111  

Triplet          

Output 0 0 0 0 1 1 1 1  

message          
          

 
 
 

Probability of decoding error, pde= P (two or more bits in error) 
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 3  
p

2
 
 3  

p
3
 (1-p) 

0
 =3p

2
-2p

3
  

= (1-p) +   
 

 

2 
   

3 
  

 

      
 

 

=190.464 x 10
-6

=0.19x 10
-3

 < p= 10
-3

 
 

Probability of no detection, pnd =P (All 3 bits in error)  = p
3
 =512 x 10

-9
 < < pde! 

 

In general observe that probability of no detection, pnd < < probability of decoding error, pde. 
 

The preceding examples illustrate the following aspects of error control coding. Note that in 

both examples with out error control coding the probability of error =8(10
-3

) of the modem. 
 

1. It is possible to detect and correct errors by adding extra bits-the check bits, to the message 
sequence. Because of this, not all sequences will constitute bonafide messages.  

 
2. It is not possible to detect and correct all errors.  

 
3. Addition of check bits reduces the effective data rate through the channel.  

 
4. Since probability of no detection is always very much smaller than the decoding error 

probability, it appears that the error detection schemes, which do not reduce the rate efficiency 

as the error correcting schemes do, are well suited for our application. Since error detection 

schemes always go with ARQ techniques, and when the speed of communication becomes a 

major concern, Forward error correction (FEC) using error correction schemes would be 

desirable.  
 
5.5 Block codes:  
 

We shall assume that the output of an information source is a sequence of Binary digits. In ‘ 
Block coding’ this information sequence is segmented into ‘ message’ blocks of fixed length, say k. 
Each message block, denoted by u then consists of k information digits. The encoder transforms these 
k-tuples into blocks of code words v, each an n- tuple ‘according to certain rules’. Clearly, corresponding 

to 2
k
 information blocks possible, we would then have 2

k
 code words of length n > k. This set of 2

k
 code 

words is called a “ Block code”. For a block code to be useful these 2
k
 code words must be distinct, i.e. 

there should be a one-to-one correspondence between u and v. u and v are also referred to as the ‘ input 

vector’ and ‘ code vector’ respectively. Notice that encoding equipment must be capable of storing the 2
k
 

code words of length n > k. Accordingly, the complexity of the equipment would become prohibitory if n 
and k become large unless the code words have a special structural property conducive for storage and 
mechanization. This structural is the ‘ linearity’. 
 
5.5.1 Linear Block Codes: 
 

A block code is said to be linear (n ,k) code if and only if the 2
k
 code words from a k- dimensional 

sub space over a vector space of all n-Tuples over the field GF(2). 
 

Fields with 2
m

 symbols are called ‘Galois Fields’ (pronounced as Galva fields), GF 

(2
m

).Their arithmetic involves binary additions and subtractions. For two valued variables, (0, 1).The 
modulo – 2 addition and multiplication is defined in Fig 6.3. 
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The binary alphabet (0, 1) is called a field of two elements (a binary field and is denoted by 

GF (2). (Notice that  represents the EX-OR operation and  represents the AND operation).Further in 

binary arithmetic, X=X and X – Y = X  Y. similarly for 3-valued variables, modulo – 3 arithmetic can 

be specified as shown in Fig 6.4. However, for brevity while representing polynomials involving binary 

addition we use + instead of  and there shall be no confusion about such usage. 
 

Polynomials f(X) with 1 or 0 as the co-efficients can be manipulated using the above relations. 

The arithmetic of GF(2
m

) can be derived using a polynomial of degree ‘ m’, with binary co-efficients 
and using a new variable  called the primitive element, such that p() = 0.When p(X) is irreducible 

(i.e. it does not have a factor of degree  m and >0, for example X
3
 + X

2
 + 1, X

3
 + X + 1, X

4
 +X

3
 +1, 

X
5
 +X

2
 +1 etc. are irreducible polynomials, whereas f(X)=X

4
+X

3
+X

2
+1 is not as f(1) = 0 and hence has a 

factor X+1) then p(X) is said to be a ‘ primitive polynomial’. 
 

If vn represents a vector space of all n-tuples, then a subset S of vn is called a subspace if (i) 
the all Zero vector is in S (ii) the sum of any two vectors in S is also a vector in S. To be more 

specific, a block code is said to be linear if the following is satisfied. “If v1 and v2 are any two code 

words of length n of the block code then v1  v2 is also a code word length n of the block code”. 
 
Example 6.1: Linear Block code with k= 3, and n = 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Observe the linearity property: With v3 = (010 101) and v4 = (100 011), v3  v4 = (110 110) = v7. 
 

Remember that n represents the word length of the code words and k represents the number of 

information digits and hence the block code is represented as (n, k) block code. 
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Thus by definition of a linear block code it follows that if g1, g2…  gk  are the k linearly 

independent code words then every code vector, v, of our code is a combination of these code words, 
i.e. 
 

v = u1 g1u2 g2 …   uk gk ……………… (6.1) 
 

Where uj= 0 or 1,  1  j  k 
 

Eq (6.1) can be arranged in matrix form by nothing that each gj is an n-tuple, i.e. 
 

     gj= (gj1, gj2,….  gjn)   …………(6.2) 
 

Thus we have     v = u G  …………………… (6.3) 
 

Where:     u = (u1, u2…  uk)  …………. (6.4) 
 

represents the data vector and      
 

 
g1  

g11 
g

12 L g1n    
 

  g
21 

g
22 L g2 n 

   
 

G  
     

……(6.5) 
 

 g2     
M 

     
 

 
 

 
 

M        
 

 g3  
      

 
  

 

   

g 
 

g 
 

L g 
   

 

     

k 1 k 2 kn 
   

 

           
  

is called the “ generator matrix”. 
 

Notice that any k linearly independent code words of an (n, k) linear code can be used to form 

a Generator matrix for the code. Thus it follows that an (n, k) linear code is completely specified by 

the k-rows of the generator matrix. Hence the encoder need only to store k rows of G and form linear 

combination of these rows based on the input message u. 
 
Example 6.2: The (6, 3) linear code of Example 6.1 has the following generator matrix: 
 

 g1   1  0   0   0   1 1 
 

G   g     1   

 2  
0   1  0   1  0 

 
 

     
 

  

g3 

     
 

    0   0   1   1   1  0  
 

If u = m5 (say) is the message to be coded, i.e. u = (011) 
 

We have v = u .G = 0.g1 + 1.g2 +1.g3 
 

= (0,0,0,0,0,0) + (0,1,0,1,0,1) + (0,0,1,1,1,0) = (0, 1, 1, 0, 1, 1) 
 
Thus  v = (0 1 1 0 1 1) 
 

“ v can be computed simply by adding those rows of G which correspond to the locations of 
1`s of u.” 
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5.5.2 Systematic Block Codes (Group Property): 
 

A desirable property of linear block codes is the “ Systematic Structure”. Here a code word is 

divided into two parts –Message part and the redund ant part. If either the first k digits or the last k 

digits of the code word correspond to the message part then we say that the code is a “ Systematic 
Block Code”. We shall consider systematic codes as depicted i n Fig.6.5. 
 
 
 
 
 
 
 
 

 

In the format of Fig.6.5 notice that: 
 

v1  = u1, v2  = u2, v3  = u3 …   vk = uk 

vk  1  u1 p11  u2 p21  u3 p31  uk pk1 

vk  2  u1 p12  u2 p22  u3 p32  uk pk2  
M M  

 
v

n 


 

u
1 

p
1,n - k  


 

u
2 

p
2,n - k  


 

u
3  

p
3,n - k  

..
 


 

u
k  

p
k, n - k 

 
Or in matrix from we have 

 
 
 
 
 
 
 
 
 
 
 
 
 

 …  …………… (5.6 a) 
 

    
 

    
 

 
………………  (5.6 b) 

 
 

  
 

    
 

    
 

    
 

 

v1    v2    ... vk 
v

k 1

v
k  2  ... vn         

 

   1 0 0 ... 0 
p

11 
p

12 ... 
 

    1 0 ... 0 p  p  ...  

u1 

 

...  uk  
0 

21 22  

u2 
         

 

M M M MMM M M M MMM 
 

    
0 0 ... 1 p 

  
p 

 
...     

0 
k 1 

 
 

         k 2  
 

i.e., v = u. G 

 

 

p1 ,n k 

p
2 ,nk 

…(5.7)
 

 M  
 

p 
  

 

  
 

 k ,nk 
 

 

 Where G = [Ik, P]   ……………… ….  (5.8) 
 

  p11 
p

12 
L

  

p
1 

,
nk    

 

   p
21 

p
22 

Lp
2 

,
nk 

   
 

Where P = 
  

……………….   (5.9) 
 

 

 M M M  
 

 

    
 

  

  

  
 

  

p p L  pk , 
  

 

      
 

   k , 1 k ,2 nk    
 

Ik is the k  k identity matrix (unit matrix), P is the k  (n – k) ‘ parity generator matrix’, in which pi, j 

are either 0 or 1 and G is a k  n matrix. The (n  k) equations given in Eq (6.6b) are referred to as parity 

check equations. Observe that the G matrix of Example 6.2 is in the systematic format. The n-vectors a = 

(a1, a2… an) and b = (b1, b2 … bn) are said to be orthogonal if their inner product defined by: 

 

a.b = (a1, a2…a  n) (b1, b2 …b  n) 
T

 = 0. 

where, ‘ T’ represents transposition. Accordingly for any kn matrix, G, with k linearly independent 

rows there exists a (n-k)  n matrix H with (n-k) linearly independent rows such that any vector in the 

row space of G is orthogonal to the rows of H and that any vector that is orthogonal to the rows of 
 
 

  



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 140 

 

  
 
 
H is in the row space of G. Therefore, we can describe an (n, k) linear code generated by G alternatively 

as follows: 
 

“An n – tuple, v is a code word generated by G, if and only if v.H 
T

 = O”. …..(5.9 
a) (O represents an all zero row vector.) 

 

This matrix H is called a “ parity check matrix” of the code. Its dimension is (n – k) n. 

 

If the generator matrix has a systematic format, the parity check matrix takes the following form. 

 
p

11  
p

21 ...  
p

k 1 1 0 0 ... 0  
 

 p
12 

 p
22 ... 

 p
k 2 0 1 0 ... 0 

 
 

H = [P
T

.In-k] =   …………(5.10) 
 

 M  M M  MMM M M M MMM M  
 

  
p 

 
... p 

 
0 0 0 ... 

  
 

p 
2 ,nk k ,nk 

1 
 

 1 ,nk          
 

 

The i
th

 row of G is: 
 

gi = (0 0 …1 …0…0 pi,1 pi,2… pi,j…  pi, n-k)   
 

        
 

i 
th

 element (k + j) 
th

 element     
 

The j
th

 row of H is:        
 

i 
th

 element  (k + j) 
th

 element   
 

hj = ( p1,j p2,j 
   

) 

   
 

…p  i,j ...pk, j 0 0 … 0 1 0 …0    
 

Accordingly the inner product of the above n – vectors is:  

)
T

 
 

gihj
T

 = (0 0 …1 …0…0 pi,1    pi,2… pi,j… pi, n-k) ( p1,j p2,j …p  i,j ...pk, j 0 0 … 0 1 0 …0 
 

        
 

i
th

 element (k + j) 
th

 element  i
th

 element (k + j) 
th

 element 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= pij + pij. = 0 (as the pij are either 0 or 1 and in modulo – 2 arithmetic X + X = 0) 

This implies simply that:   

G. H
T

 = Ok (n – k) …………………………. (6.11) 
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Where Ok (n – k)  is an all zero matrix of dimension k (n – k) . 
 

Further, since the (n – k) rows of the matrix H are linearly independent, the H matrix of Eq. 

(6.10) is a parity check matrix of the (n, k) linear systematic code generated by G. Notice that the 

parity check equations of Eq. (6.6b) can also be obtained from the parity check matrix using the fact 
 

v.H
T

 = O. 
 

Alternative Method of proving v.H
T

 = O.: 
 

We have v = u.G = u. [Ik: P]= [u1, u2… u k, p1, p2 …. P  n-k] 

Where pi =( u1 p1,i + u2 p2,i + u3 p3,i  …+ u k pk, i) are the parity bits found from Eq (6.6b). 

 P  
Now   H 

T
     

 
I

nk  

 v.H
T

 = [u1 p11 + u2 p21 +…. + …. + uk pk1 + p1, u1 p12 + u2 p22 + ….. + uk pk2 + 

p2, … u1 p1, n-k + u2 p2, n-k + …. + uk pk, n-k + pn-k] 
 

= [p1 + p1, p2 + p2…   pn-k + pn-k] 

 

= [0, 0… 0  ] 
 

Thus v. H
T

 = O. This statement implies that an n- Tuple v is a code word generated by G if and only 
if 

v H
T

 = O 
 

Since v = u G, This means that:  u G H
T

 = O 
 

If this is to be true for any arbitrary message vector v then this implies: G H
T

 = Ok (n – k) 

 

Example 5.3: 
 
Consider the generator matrix of Example 6.2, the corresponding parity check matrix is 
 

 

 0 1 1 1 0 0 
 

H =  0 1 0 1 0  
 

1 
 

 

       
 

 1 1 0 0 0 1  
 

        
 

 
 
5.5.3 Syndrome and Error Detection: 
 

Suppose v = (v1, v2…   vn) be a code word transmitted over a noisy channel and let: 

r = (r1, r2 …. rn) be the received vector. Clearly, r may be different from v owing to the channel noise. 
The vector sum 
 

e = r – v = (e1, e2…   en) …………………… (5.12) 
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is an n-tuple, where ej = 1 if rj  vj and ej = 0 if rj = vj. This n – tuple is called the “ error vector” or “ 

error pattern”. The 1’s in e are the transmission errors caused by the channel noise. Hence from Eq 
(6.12) it follows: 
 

r = v  e …………(5.12a)  
Observe that the receiver noise does not know either v or e. Accordingly, on reception of r the 

decoder must first identify if there are any transmission errors and, then take action to locate these 
errors and correct them (FEC – Forward Error Correction) or make a request for re–transmission 
(ARQ). When r is received, the decoder computes the following (n-k) tuple: 
 

s = r. H
T

 ………………… ….. (5.13) 

= (s1, s2…   sn-k)   
 

It then follows from Eq (6.9a), that s = 0 if and only if r is a code word and s  0 iffy r is not a 
code word. This vector s is called “ The Syndrome” (a term used in medical science referring to 
collection of all symptoms characterizing a disease). Thus if s = 0, the receiver accepts r as a valid 
code word. Notice that there are possibilities of errors undetected, which happens when e is identical 
to a nonzero code word. In this case r is the sum of two code words which according to our linearity 
property is again a code word. This type of error pattern is referred to an “ undetectable error 

pattern”. Since there are 2
k
 -1 nonzero code words, it follows that there are 2

k
 -1 error patterns as well. 

Hence when an undetectable error pattern occurs the decoder makes a “ decoding error”.  
Eq. (6.13) can be expanded as below: 
 
 
 
 
 
 
 
 
 
 
 
 

s1  r1 p11  r2 p21  ....  rk pk 1 r k 1   
 

s2  r1 p12  r2 p22  ....  rk pk 2  rk 2 
  

 

 
…(5.14)  

From which we have      
 

M M M M M   
 

s
nk 

      
 


 

r
1 

p
1,nk  


 

r
2 

p
2,nk  


 

....
 


 

r
k 

p
k ,nk  


 

r
n  

 

A careful examination of Eq. (6.14) reveals the following point. The syndrome is simply the vector 

sum of the received parity digits (rk+1, rk+2 ...r n) and the parity check digits recomputed from the 

received information digits (r1, r2 … r n). 
Example 6.4: 

We shall compute the syndrome for the (6, 3) systematic code of Example 5.2. We have 
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 0 1 1  
 

  
1 0 1 

 
 

 
   

s = (s1, s2, s3) = (r1, r2, r3, r4, r5, r6) 
    

 1 1 0  
 

  

1 0 0 
 

 

   
 

  0 1 0  
 

   
0 1 

 
 

 0  
 

      
 

or s1 = r2 +r3 
s2 = r1 +r3 

s3 = r1 +r2 

+ r4  

+ r5  

+ r6  

 
In view of Eq. (6.12a), and Eq. (6.9a) we have 
 

s = r.H
T

 = (v e) H
T

 
 

= v .H
T

  e.H
T

 
 

or s = e.H
T

 ……………  (5.15) 
 

as v.H
T

= O. Eq. (6.15) indicates that the syndrome depends only on the error pattern and not on the 
transmitted code word v. For a linear systematic code, then, we have the following relationship 
between the syndrome digits and the error digits.  

s1  = e1p11 + e2 p 21+  …  . + ek p k,1 + ek +1   
 

s 2  = e1p12 + e2 p 22  +  …  + ek p k, 2 
+ e

k +2 
  

 

 
……..(5.16) 

 

M M M M M 
 

 

  
 

s
 n-k  

= e
1

p
1, n-k  

+ e
2 

p
 2, n-k  

+ …  .. + e
k 

p
 k, n -k  

+ e
n 

  
 

  
 

 
Thus, the syndrome digits are linear combinations of error digits. Therefore they must provide 

us information about the error digits and help us in error correction. 

 

Notice that Eq. (6.16) represents (n-k) linear equations for n error digits – an under-determined 

set of equations. Accordingly it is not possible to have a unique solution for the set. As the rank of the 

H matrix is k, it follows that there are 2
k
 non-trivial solutions. In other words there exist 2

k
 error patterns 

that result in the same syndrome. Therefore to determine the true error pattern is not any easy task 
 
 

Example 5.5: 
 
For the (6, 3) code considered in Example 6 2, the error patterns satisfy the following equations: 
 

s1 = e2 +e3 +e4 ,  s2 = e1 +e3 +e5 ,  s3 = e1 +e2 +e6 

 
Suppose, the transmitted and received code words are v = (0 1 0 1 0 1), r = (0 1 1 1 0 1) 
 

Then s = r.H
T

 = (1, 1, 0) 
 
Then it follows that: 

e2 + e3 +e4 = 1 

e1 + e3 +e5 =1 
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e1 + e2 +e6  = 0 
 

There are 2
3
 = 8 error patterns that satisfy the above equations. They are: 

 
{0 0 1 0 0 0, 1 0 0 0 0, 0 0 0 1 1 0, 0 1 0 0 1 1, 1 0 0 1 0 1, 0 1 1 1 0 1, 1 0 1 0 1 1, 1 1 1 1 1 0} 

 
To minimize the decoding error, the “ Most probable error pattern” that satisfies Eq (6.16) is 

chosen as the true error vector. For a BSC, the most probable error pattern is the one that has the 

smallest number of nonzero digits. For the Example 6.5, notice that the error vector (0 0 1 0 0 0) has 

the smallest number of nonzero components and hence can be regarded as the most probable error 

vector. Then using Eq. (6.12) we have 

 

vˆ = r  e 

 

= (0 1 1 1 0 1) + (0 0 1 0 0 0) = (0 1 0 1 0 1) 

 
Notice now that vˆ indeed is the actual transmitted code word. 

 

5.6 Minimum Distance Considerations: 

 
The concept of distance between code words and single error correcting codes was first 

developed by R .W. Hamming. Let the n-tuples, 
 

 = (1, 2 …   n),  = (1, 2 …   n) 

 

be two code words. The “ Hamming distance” d (,) between such pair of code vectors is defined as 

the number of positions in which they differ. Alternatively, using Modulo-2 arithmetic, we have 
 

n 
d (  ,  )    ∑ (  j    j ) ……(5.17) 

j 1 

 

(Notice that  represents the usual decimal summation and  is the modulo-2 sum, the EX-OR 

function). 
 

The “ Hamming Weight” () of a code vector  is defined as the number of nonzero 

elements in the code vector. Equivalently, the Hamming weight of a code vector is the distance 

between the code vector and the ‘ all zero code vector’. 
 
 

Example 6.6:  Let    = (0 1 1 1 0 1),  = (1 0 1 0 1 1) 
 
Notice that the two vectors differ in 4 positions and hence d (,) = 4. Using Eq (5.17) we find 
 

d (,) = (0  1) + (1  0) + (1  1) + (1  0) + (0  1) + (1  1) 
 

= 1 + 1 + 0 + 1 + 1 + 0 
 

= 4 …..  (Here + is the algebraic plus not modulo – 2   sum) 
 

Further,  () = 4 and () = 4. 
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The “ Minimum distance” of a linear block code is defined as the smallest Hamming distance 

between any pair of code words in the code or the minimum distance is the same as the smallest 

Hamming weight of the difference between any pair of code words. Since in linear block codes, the 

sum or difference of two code vectors is also a code vector, it follows then that “ the minimum 

distance of a linear block code is the smallest Hamming weight of the nonzero code vectors in the 

code”. 
 

The Hamming distance is a metric function that satisfies the triangle inequality. Let, and  

be three code vectors of a linear block code. Then 

 

d (,) + d (, )  d(,) ………………. (5.18) 
From the discussions made above, we may write 

d (,) =  (  ) …………………. (5.19) 
Example 6.7:  For the vectors  and  of Example 6.6, we have: 

 

   = (01), (10), (11) (10), (01) (11)= (11 0 1 1 0) 
 

( ) = 4 = d (,) 
 

If   = (1 0 1 01 0), we have d (,) = 4; d (,) = 1; d (,) = 5 

 
Notice that the above three distances satisfy the triangle inequality: 

 

d (,) + d (,) = 5 = d (,) 

 

d (,) + d (,) = 6 > d (,) 

 

d (,) + d (,) = 9 > d (,) 

 
Similarly, the minimum distance of a linear block code, ‘ C’ may be mathematically 

represented as below: 
 

dmin =Min {d (,):, C,  } …………….(5.20) 

 

=Min {( ):, C, } 

 

=Min {(v), v  C, v   0} ……… (5 .21) 
 

That is dmin   min . The parameter   min  is called the “ minimum weight” of the linear 

code C.The minimum distance of a code, dmin, is related to the parity check matrix, H, of the code in 
a fundamental way. Suppose v is a code word. Then from Eq. (6.9a) we have: 
 

0 =  v.H
T

 
 

= v1h1  v2h2  ….    vnhn 
 

Here h1, h2  … h  n  represent the columns of the H matrix. Let vj1, vj2  …v  jl be the ‘ l’ nonzero 

components of v i.e. vj1 = vj2 = …. v  jl = 1. Then it follows that: 
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hj1 hj2 …    hjl = O
T

 ………  (5.22) 
 

That is “ if v is a code vector of Hamming weight ‘l’, then th ere exist ‘l’ columns of H such that 

the vector sum of these columns is equal to the zero vector”. Suppose we form a binary n-tuple of weight 

‘ l’, viz. x = (x1, x2 … x n) whose nonzero components are xj1, xj2 … x jl. Consider the product: 
 
 

x.H
T

 = x1h1  x2h2 ….   xnhn = xj1hj1  xj2hj2  ….    xjlhjl = hj1  hj2  …    hjl 
 

If Eq. (6.22) holds, it follows x.H
T

 = O and hence x is a code vector. Therefore, we conclude 

that “if there are ‘l’ columns of H matrix whose vector sum is the zero vector then there exists a code 

vector of Hamming weight ‘l’ ”. 
From the above discussions, it follows that: 
 

i) If no (d-1) or fewer columns of H add to O
T

, the all zero column vector, the code has 
a minimum weight of at least‘ d’.  

 
ii) The minimum weight (or the minimum distance) of a linear block code C, is the smallest 

number of columns of H that sum to the all zero column vector.  

 

 0 1 1 1 0 0  
 

For the H matrix of Example 6.3, i.e. H =   , notice that all columns of H are non  

1 0 1 0 1 0 
 

 

   
 

 1 1 0 0 0 1  
 

    
 

zero and distinct. Hence no two or fewer columns sum to zero vector. Hence the minimum weight of 

the code is at least 3.Further notice that the 1
st

, 2
nd

 and 3
rd

 columns sum to O
T

. Thus the minimum 
weight of the code is 3. We see that the minimum weight of the code is indeed 3 from the table of 
Example 6.1. 

 

5.6.1 Error Detecting and Error Correcting Capabilities: 
 

The minimum distance, dmin, of a linear block code is an important parameter of the code. To 

be more specific, it is the one that determines the error correcting capability of the code. To 
understand this we shall consider a simple example. Suppose we consider 3-bit code words plotted at 
the vertices of the cube as shown in Fig.6.10. 
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Clearly, if the code words used are {000, 101, 110, 011}, the Hamming distance between the words 

is 2. Notice that any error in the received words locates them on the vertices of the cube which are not 

code words and may be recognized as single errors. The code word pairs with Hamming distance = 3 

are: (000, 111), (100, 011), (101, 010) and (001, 110). If a code word (000) is received as (100, 010, 

001), observe that these are nearer to (000) than to (111). Hence the decision is made that the 

transmitted word is (000). 

 

Suppose an (n, k) linear block code is required to detect and correct all error patterns (over a 

BSC), whose Hamming weight,  t. That is, if we transmit a code vector  and the received vector is  

=   e, we want the decoder out put to be ˆ =  subject to the condition (e)  t. 
 

Further, assume that 2
k
 code vectors are transmitted with equal probability. The best decision 

for the decoder then is to pick the code vector nearest to the received vector  for which the 

Hamming distance is the smallest. i.e., d (,) is minimum. With such a strategy the decoder will be 

able to detect and correct all error patterns of Hamming weight (e)  t provided that the minimum 
distance of the code is such that: 
 

dmin  (2t + 1) ………………(5.23) 
 

dmin  is either odd or even. Let ‘ t’ be a positive integer such that 
 

2t + 1    dmin   2t + 2 …………………  (5.24) 

Suppose  be any other code word of the code. Then, the Hamming distances 

among , and  satisfy the triangular inequality: 
 

d(,) + d(, )  d(,) …………………   (5.25) 

Suppose an error pattern of ‘ t ’ errors occurs during transmission of . Then the received vector   
differs from  in ‘ t ’ places and hence d(,)  = t. Since  and  are code vectors, it follows from  
Eq. (6.24). 
 

d(,)  dmin  2t + 1 ……………(5.26) 
 

Combining Eq. (6.25) and (6.26) and with the fact that d(,) = t, it follows that: 

 

d (,  )  2t + 1- t ………………(5.27) 

Hence if t t, then: d (, ) > t ………………(528) 
 

Eq 6.28 says that if an error pattern of ‘ t’ or fewer errors occurs, the received vector  is 

closer (in Hamming distance) to the transmitted code vector  than to any other code vector  of the 

code. For a BSC, this means P (|) > P (|) for . Thus based on the maximum likelihood 

decoding scheme,  is decoded as  , which indeed is the actual transmitted code word and this 

results in the correct decoding and thus the errors are corrected. 
 

On the contrary, the code is not capable of correcting error patterns of weight l>t. To show 

this we proceed as below: 
 

Suppose d (,) = dmin, and let e1 and e2 be two error patterns such that: 
 

i) e1  e2 =     
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ii) e1 and  e2  do not have nonzero components in common places. Clearly,  
 

(e1)  + (e2) = ( ) = d( ,) = dmin …………(5.29) 
 

Suppose,  is the transmitted code vector and is corrupted by the error pattern e1. Then the received 
vector is: 
 

 =    e1 ……………………….. (5.30) 
 

and d (,) = (   ) = (e1) …………… (5.31) 
 

d (,) = () 
 

= (    e1) = (e2) ……………………….(5.32) 
 

If the error pattern e1 contains more than‘ t’ errors, i.e. (e1) > t, and since 2t + 1  dmin   2t + 2, it 

follows  

(e2)  t- 1 …………………………(5.33) 

 d (,)  d (,) …………………………….  (5.34) 
 

This inequality says that there exists an error pattern of l > t errors which results in a received 

vector closer to an incorrect code vector i.e. based on the maximum likelihood decoding scheme 

decoding error will be committed. 
 

To make the point clear, we shall give yet another illustration. The code vectors and the 

received vectors may be represented as points in an n- dimensional space. Suppose we construct two 

spheres, each of equal radii,‘ t’ around the points that represent the code vectors  and . Further let 

these two spheres be mutually exclusive or disjoint as shown in Fig.6.11 (a). 
 

For this condition to be satisfied, we then require d (,)  2t + 1.In such a case if d (,) t, it 

is clear that the decoder will pick  as the transmitted vector. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

On the other hand, if d (,)  2t, the two spheres around  and  intersect and if ‘’ is located as in 

Fig. 6.11(b), and  is the transmitted code vector it follows that even if d (,) t, yet  is as close to 

 as it is to. The decoder can now pick  as the transmitted vector which is wrong. Thus it is 
imminent that “an (n, k) linear block code has the power to correct all error patterns of weight‘ t’ or 

less if and only if d (,)  2t + 1 for all  and”. However, since the smallest distance between any 

pair of code words is the minimum distance of the code, dmin , ‘guarantees’ correcting all the error 

patterns of 
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t  

1      
 

   

 

 (d
 min 1) ………..   (5.35)  

 

     
 

    2      
 

1      1  
 

where  (d
 min 1) denotes the largest integer no greater than the number  

( dmin  1 )  . The    
 

2      
2
  

 

1   
 

parameter‘ t’ =  (d
 min 1)   is called the “ random-error-correcting capability” of the code and the  

  

2   
  

code is referred to as a “ t-error correcting code”. The ( 6, 3) code of Example 6.1 has a minimum 

distance of 3 and from Eq. (6.35) it follows t = 1, which means it is a ‘ Single Error Correcting’ 

(SEC) code. It is capable of correcting any error pattern of single errors over a block of six digits. 
 

For an (n, k) linear code, observe that, there are 2
n-k

 syndromes including the all zero syndrome. 
Each syndrome corresponds to a specific error pattern. If ‘ j’ is the number of error locations in the n-  

dimensional error pattern e, we find in general, there are 
n 

 nC 
 

multiple error patterns. It then    
j  

       
 

  j      
 

follows that the total number of all possible error patterns = 
t n 

, where‘ t’ is the maximum number  ∑   

       
 

  j  0  j    
 

of error locations in e. Thus we arrive at an important conclusion. “ If an (n, k) linear block code is to 
be capable of correcting up to‘t’ errors, the total number of syndromes shall not be less than the total 
number of all possible error patterns”, i.e. 
 

 t n  
 

2n-k    ∑ ……(5.36) 
 

  
 

    
 

 j  0  j  
 

Eq (6.36) is usually referred to as the “ Hamming bound”. A binary code for which the Hamming 
Bound turns out to be equality is called a “ Perfect code”. 
 
6.7 Standard Array and Syndrome Decoding: 
 

The decoding strategy we are going to discuss is based on an important property of the 
syndrome. 
 

Suppose vj , j = 1, 2… 2 
k
, be the 2

k
 distinct code vectors of an (n, k) linear block code. 

Correspondingly let, for any error pattern e, the 2
k
 distinct error vectors, ej, be defined by 

 

ej = e  vj , j = 1, 2… 2  
k
 ……………………….  (5.37) 

 

The set of vectors  {ej, j = 1, 2 … 2  
k
} so defined is called the “ co- set” of the code. That is, a 

‘ co-set’ contains exactly 2
k
 elements that differ at most by a code vector. It then fallows that there 

are 2
n-k

 co- sets for an (n, k) linear block code. Post multiplying Eq (6.37) by H
T

, we find 
 

ej H
T

 =  eH
T
  vj H

T
 

= e H
T

 ……………(5.38) 
 

Notice that the RHS of Eq (6.38) is independent of the index j, as for any code word the term 

vj H
T

 = 0. From Eq (6.38) it is clear that “ all error patterns that differ at most by a code word have the 
same syndrome”. That is, each co-set is characterized by a uniqu e syndrome. 
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Since the received vector r may be any of the 2
n
 n-tuples, no matter what the transmitted code 

word was, observe that we can use Eq (6.38) to partition the received code words into 2
k
 disjoint sets 

and try to identify the received vector. This will be done by preparing what is called the “ standard 
array”. The steps involved are as below: 
 

Step1:  Place  the  2
k
   code  vectors  of  the code  in a row,  with the  all zero vector 

v1 = (0, 0, 0… 0  ) = O as the first (left most) element.     

Step 2: From among the remaining (2
n
 – 2 

k
) - n – tuples, e2 is chosen and placed below the all- 

zero  vector,  v1.  The  second  row can  now be formed  by placing (e2  vj), 

j = 2, 3… 2  
k
 under vj       

 

Step 3: Now take an un-used n-tuple e3 and complete the 3
rd

 row as in step 2. 
 

Step 4: continue the process until all the n-tuples are used. 
 

The resultant array is shown in Fig. 5.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since all the code vectors, vj, are all distinct, the vectors in any row of the array are also 

distinct. For, if two n-tuples in the l-th row are identical, say el  vj = el  vm, j  m; we should have 

vj = vm which is impossible. Thus it follows that “no two n-tuples in the same row of a standard array 
are identical”. 
 

Next, let us consider that an n-tuple appears in both l-th row and the m-th row. Then for some 

j1 and j2 this implies el  vj1 = em  vj2, which then implies el = em  (vj2  vj1); (remember that X  

X = 0 in modulo-2 arithmetic) or el = em  vj3 for some j3. Since by property of linear block codes vj3 is 

also a code word, this implies, by the construction rules given, that el must appear in the m-th row, which 

is a contradiction of our steps, as the first element of the m-th row is em and is an unused vector in the 
previous rows. This clearly demonstrates another important property of the array: “Every n-tuple appears 
in one and only one row”. 
 

From the above discussions it is clear that there are 2
n-k

 disjoint rows or co-sets in the 

standard array and each row or co-set consists of 2
k
 distinct entries. The first n-tuple of each co-set, 

(i.e., the entry in the first column) is called the “ Co-set leader”. Notice that any element of the co-set 
can be used as a co-set leader and this does not change the element of the co-set - it results simply in 
a permutation. 
 

Suppose Dj
T

 is the j
th

 column of the standard array. Then it follows   

Dj = {vj, e2  vj, e3  vj… e  2 
n-k

  vj} ………………….. ( 6.39) 
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where vj is a code vector and e2, e3, … e  2
n-k

 are the co-set leaders. 
 

The 2
k
 disjoints columns D1

T
, D2

T
…   D2 k 

T
 can now be used for decoding of the code. If vj is  

the transmitted code word over a noisy channel, it follows from Eq (6.39) that the received vector r is 

in Dj
T

 if the error pattern caused by the channel is a co-set leader. If this is the case r will be decoded 

correctly as vj. If not an erroneous decoding will result for, any error pattern eˆ which is not a co-set 
leader must be in some co-set and under some nonzero code vector, say, in the i-th co-set and under v 
 0. Then it follows 

 

 ˆ = ei  vl  , and the received vector is r  

 e 
 

  ˆ 
 

 = vj  e  = vj  (ei  vl ) = ei  vm 
 

Thus the received vector is in Dm
T

 and it will 
 

be decoded as vm and a decoding error has been committed. Hence it is explicitly clear that “Correct 
decoding is possible if and only if the error pattern caused by the channel is a co-set leader” . 

Accordingly, the 2
n-k

 co-set leaders (including the all zero vector) are called the “ Correctable error 

patterns”, and it follows “ Every (n, k) linear block code is capable of correcting 2
n-k

 error patterns”. 
 

So, from the above discussion, it follows that in order to minimize the probability of a 

decoding error, “ The most likely to occur” error patterns should be chosen as co-set leaders . For a 

BSC an error pattern of smallest weight is more probable than that of a larger weight. Accordingly, when 

forming a standard array, error patterns of smallest weight should be chosen as co-set leaders. Then the 

decoding based on the standard array would be the ‘ minimum distance decoding’ (the maximum 

likelihood decoding). This can be demonstrated as below. 
 

Suppose a received vector r is found in the j
th

 column and l
th

 row of the array. Then r will be 

decoded as vj. We have 
 

d(r, vj) = (r  vj ) = (el  vj  vj ) = (el ) 
 

where we have assumed vj indeed is the transmitted code word. Let vs be any other code word, other 

than vj. Then 
 

d(r, vs ) = (r vs ) = (el  vj  vs ) = (el  vi ) 
 

as vj and vs are code words, vi = vj  vs is also a code word of the code. Since el and (el  vi ) are in 

the same co set and, that el has been chosen as the co-set leader and has the smallest weight it follows 

(el ) (el  vi ) and hence d(r, vj )  d(r, vs ). Thus the received vector is decoded into a closet code 
vector. Hence, if each co-set leader is chosen to have minimum weight in its co-set, the standard array 
decoding results in the minimum distance decoding or maximum likely hood decoding. 
 

Suppose “a 0, a1, a2 …, an” denote the number of co-set leaders with weights 0, 1, 2… n. This 

set of numbers is called the “ Weight distribution” of the co-set leaders. Since a decoding error wil l 
occur if and only if the error pattern is not a co-set leader, the probability of a decoding error for a 
BSC with error probability (transition probability) p is given by  

n  

P(E)  1  ∑ a j p 
j
  (1  p)

n
 
j
 ……………(5.40) 

j 0  

Example 6.8:  
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For the (6, 3) linear block code of Example 6.1 the standard array, along with the syndrome 
table, is as below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The weight distribution of the co-set leaders in the array shown are a0 = 1, a1 = 6, a2 = 1, a3 = a4 = a5 

= a6 = 0.From Eq (6.40) it then follows: 
 

P (E) = 1- [(1-p) 
6
 +6p (1-p) 

5
 + p

2
 (1-p) 

4
] 

 

With p = 10
-2

, we have P (E) = 1.3643879  10
-3

 
 
A received vector (010 001) will be decoded as (010101) and a received vector (100 110) will be 

decoded as (110 110). 
 

We have seen in Eq. (6.38) that each co-set is characterized by a unique syndrome or there is 
a one- one correspondence between a co- set leader (a correctable error pattern) and a syndrome. 

These relationships, then, can be used in preparing a decoding table that is made up of 2
n-k

 co-set 
leaders and their corresponding syndromes. This table is either stored or wired in the receiver. The 
following are the steps in decoding: 
 

Step 1:  Compute the syndrome s = r. H
T

 
 

Step 2: Locate the co-set leader ej whose syndrome is s. Then ej is assumed to be the error pattern caused 

by the channel. 
 

Step 3:  Decode the received vector r into the code vector v = r  ej 
 

This decoding scheme is called the “ Syndrome decoding” or the “ Table look up decoding”. 
 
Observe that this decoding scheme is applicable to any linear (n, k) code, i.e., it need not necessarily 

be a systematic code. 
 
Comments: 
 

1) Notice that for all correctable single error patterns the syndrome will be identical to a 
column of the H matrix and indicates that the received vector is in error corresponding to 

that column position.  
 
For Example, if the received vector is (010001), then the syndrome is (100). This is identical 

withthe4
th

 column of the H- matrix and hence the 4
th

 – position of the received vector is in error. 
Hence the corrected vector is 010101. Similarly, for a received vector (100110), the syndrome is 101  
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and this is identical with the second column of the H-matrix. Thus the second position of the received 

vector is in error and the corrected vector is (110110). 
 

2) A table can be prepared relating the error locations and the syndrome. By suitable combinatorial 
circuits data recovery can be achieved. For the (6, 3) systematic linear code we have the following 

table for r = (r1 r2 r3 r4 r5 r 6.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.8 Hamming Codes: 
 
Hamming code is the first class of linear block codes devised for error correction. The single error 
correcting (SEC) Hamming codes are characterized by the following parameters. 
 

Code length: n = (2
m

-1) 
 

Number of Information symbols: k = (2
m

 – m – 1) 
 
Number of parity check symbols :( n – k) = m 

 

Error correcting capability: t = 1, (dmin= 3) 
 
The parity check matrix H of this code consists of all the non-zero m-tuples as its columns. In 

systematic form, the columns of H are arranged as follows 
 

H = [Q M Im] 
 

Where Im is an identity (unit) matrix of order m  m and Q matrix consists of 
 

(2
m

-m-1) columns which are the m-tuples of weight 2 or more. As an illustration for k=4 we have from k 

= 2
m

 – m – 1. 
 

m=1 k=0, m=2   k=1, m=3   k=4 
 

Thus we require 3 parity check symbols and the length of the code 2
3
 – 1 = 7 . This results in the (7, 

4) Hamming code. 
 
The parity check matrix for the (7, 4) linear systematic Hamming code is then 
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The generator matrix of the code can be written in the form 
 

G  I2 m m 1 M Q
T

  

 

And for the (7, 4) systematic code it follows: 
 
 
 
 
 
 
 
 

 

p1   p2   m1   p3   m2  m3    m4   p4   m5   m6 m7    m8     m9    m10   m11    p5     m12 
 

Where p1, p2, p3…  are the parity digits and m1, m2, m3…  are the message digits. For example, let us 

consider the non systematic (7, 4) Hamming code. 
 

p1 = 1, 3, 5, 7, 9, 11, 13, 15… 
 

p2 = 2, 3, 6, 7, 10, 11, 14, 15 … 
 

p3 = 4, 5, 6, 7, 12, 13, 14, 15… 
 

It can be verified that (7, 4), (15, 11), (31, 26), (63, 57) are all single error correcting Hamming 

codes and are regarded quite useful. 
 

An important property of the Hamming codes is that they satisfy the condition of Eq. (6.36) 

with equality sign, assuming that t=1.This means that Hamming codes are “ single error correcting 
binary perfect codes”. This can also be verified from Eq. (6.35) 
 

We may delete any ‘ l ’columns from the parity check matrix H of the Hamming code resulting 

in the reduction of the dimension of H matrix to m  (2
m

-l-1).Using this new matrix as the parity 
check matrix we obtain a “ shortened” Hamming code with the following parameters. 
 

Code length: n = 2
m

-l-1 
 

Number of Information symbols: k=2
m

-m-l-1 

Number of parity check symbols: n – k = m 

Minimum distance: dmin  3 
 
Notice that if the deletion of the columns of the H matrix is proper, we may obtain a Hamming code 

with dmin = 4.For example if we delete from the sub-matrix Q all the columns of even weight, we 

obtain an m  2
m-1

 matrix  

H   Q  : I m  
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Where 

 

contains (2
m-1

  -m) columns of odd weight. 

 
 

Q Clearly no three columns add to zero as all 
 

columns have odd weight .However, for a column in Q , there exist three columns in Im such that four 
 
columns add to zero .Thus the shortened Hamming codes with H as the parity check matrix has 

minimum distance exactly 4. 
 
The distance – 4 shortened Hamming codes can be used for correcting all single error patterns while 

simultaneously detecting all double error patterns. Notice that when single errors occur the 

syndromes contain odd number of one’s and for double errors it contains even number of ones. 

Accordingly the decoding can be accomplished in the following manner. 
 

(1) If s = 0, no error occurred.  
 

(2) If s contains odd number of ones, single error has occurred .The single error pattern pertaining 

to this syndrome is added to the received code vector for error correction.  
 

(3) If s contains even number of one’s an uncorrectable error pattern has been detected.  
 

Alternatively the SEC Hamming codes may be made to detect double errors by adding an extra 

parity check in its (n+1) 
Th

 position. Thus (8, 4), (6, 11) etc. codes have dmin = 4 and correct 
single errors with detection of double errors. 

 

 

Review Questions:  
1. Design a single error correcting code with a message block size of 11 and show that by an 

example that it can correct single error.  
 

2. If Ci and Cj an two code vectors in a (n,k) linear block code, show that their sum is also a code 

vector.  
 

3. Show CH
T

=0 for a linear block code.  

 
4. Prove that the minimum distance of a linear block code is the smallest weight of the non-zero 

code vector in the code.  

 
5. What is error control coding? Which are the functional blocks of a communication system that 

accomplish this? Indicate the function of each block. What is the error detection and 

correction on the performance of communication system?  

 
6. Explain briefly the following:  

a. Golay code  

b. BCH Code  

 
7. Explain the methods of controlling errors  

 
8. List out the properties of linear codes.  

 
9. Explain the importance of hamming codes & how these can be used for error detection and 

correction.  

 

10. Write a standard array for (7.4) code  
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UNIT – 6 
 
 
 
 

 

Syllabus:  
Binary Cycle Codes, Algebraic structures of cyclic codes, Encoding using an (n- k) bit shift 
register, Syndrome calculation. BCH codes. 7 Hours 

 
 
 
 
 
 
 
 
Text Books:  

Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 
1996. Digital communication, Simon Haykin, John Wiley, 2003. 
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ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007  
Digital Communications - Glover and Grant; Pearson Ed. 2nd Ed 2008 
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UNIT – 6 

 
We are, in general, not very much concerned in our every daily life with accurate transmission 

of information. This is because of the redundancy associated with our language-in conversations, 

lectures, and radio or telephone communications. Many words or even sentences may be missed still 
not distorting the meaning of the message.  

However, when we are to transmit intelligence-more information in a shorter time, we wish to 

eliminate unnecessary redundancy. Our language becomes less redundant and errors in transmission 

become more serious. Notice that while we are talking about numerical data, misreading of even a 

single digit could have a marked effect on the intent of the message. Thus the primary objective of 

coding for transmission of intelligence would be two fold – increase the efficiency and reduce the 

transmission errors. Added to this we would like our technique to ensure security and reliability. In 

this chapter we present some techniques for source encoding and connection between coding and 

information theory in the light of Shannon’s investigation. The problem of channel encoding- coding 

for error detection and correction will be taken up in the next chapter. 
 

 

6.1  Definition of Codes: 

 
‘Encoding’ or ‘Enciphering’ is a procedure for asso ciating words constructed from a finite alphabet 
of a language with given words of another language in a one-to- one manner. 

 
Let the source be characterized by the set of symbols 
 

S= {s1, s2... sq} ………. (6.1) 

We shall call ‘ S’ as the “ Source alphabet”. Consider another set, X, comprising of ‘ r’ symbols. 

X={x1, x2…x  r} …………. (6.2) 

We shall  call ‘ X’ as  the “ code alphabet”.  We define “ coding” as  the mapping of all  possible  
sequences of symbols of S into sequences of symbol of X. In other words “ coding means 
representing each and every symbol of S by a sequence of symbols of X such that there shall be a one-
to-one relationship” Any finite sequence of symbols from an alphabet will be called a “ Word”. Thus any 
sequence from the alphabet ‘ X’ forms a “ code word”. The total number of symbols contained in the ‘ 

word’ will be called “ word length”. For example the sequences { x1 ; x1x3x4 ; x3x5x7x9 ; x1x1x2x2x2} 

form code words. Their word lengths are respectively1; 3; 4; and 5.The sequences 
{100001001100011000} and {1100111100001111000111000} are binary code words with word lengths 
18 and 25 respectively. 

 

6.2 Basic properties of codes:  

 
The definition of codes given above is very broad and includes many undesirable properties. 

In order that the definition is useful in code synthesis, we require the codes to satisfy certain 

properties. We shall intentionally take trivial examples in order to get a better understanding of the 
desired properties. 
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1. Block codes: 

 

A block code is one in which a particular message of the source is always encoded into the 

same “ fixed sequence” of the code symbol. Although, in general, block m eans ‘ a group having 

identical property’ we shall use the word here to mean a ‘ fixed sequence’ only. Accordingly, the code can 

be a ‘ fixed length code’ or a “ variable length code” and we shall be concentrating on the latter type in 

this chapter. To be more specific as to what we mean by a block code, consider a communication system 

with one transmitter and one receiver. Information is transmitted using certain set of code words. If the 

transmitter wants to change the code set, first thing to be done is to inform the receiver. Other wise the 

receiver will never be able to understand what is being transmitted. Thus, until and unless the receiver is 

informed about the changes made you are not permitted to change the code set. In this sense the code 

words we are seeking shall be always finite sequences of the code alphabet-they are fixed sequence 

codes. 
 

Example 6.1: Source alphabet is S = {s1, s2, s3, s4}, Code alphabet is X = {0, 1} and The Code words 
are: C = {0, 11, 10, 11} 

 

2. Non – singular codes: 
 

A block code is said to be non singular if all the words of the code set X1, are “distinct”. The 

codes given in Example 6.1 do not satisfy this property as the codes for s2 and s4 are not different. 
We can not distinguish the code words. If the codes are not distinguishable on a simple inspection we 
say the code set is “ singular in the small”. We modify the code as below. 

 

Example 6.2: S = {s1, s2, s3, s4}, X = {0, 1};   Codes, C = {0, 11, 10, 01} 

 
However, the codes given in Example 6.2 although appear to be non-singular, upon transmission 
would pose problems in decoding. For, if the transmitted sequence is 0011, it might be interpreted as 

s1 s1 s4 or s2 s4. Thus there is an ambiguity about the code. No doubt, the code is non-singular in the 

small, but becomes “ Singular in the large”. 

 

3. Uniquely decodable codes: 

 
A non-singular code is uniquely decipherable, if every word immersed in a sequence of 

words can be uniquely identified. The n
th

 extension of a code, that maps each message into the code 
words C, is defined as a code which maps the sequence of messages into a sequence of code words. 
This is also a block code, as illustrated in the following example. 

 

Example 6.3: Second extension of the code set given in Example 6.2. 
 

S
2
={s1s1,s1s2,s1s3,s1s4; s2s1,s2s2,s2s3,s2s4,s3s1,s3s2,s3s3,s3s4,s4s1,s4s2,s4s3,s4s4} 

 

Source Codes Source Codes Source Codes Source Codes 

Symbols  Symbols  Symbols  Symbols  

s1s1 0 0 s2s1 1 1 0 s3s1 1 0 0 s4s1 0 1 0 

s1s2 0 1 1 s2s2 1 1 1 1 s3s2 1 0 1 1 s4s2 0 1 1 1 

s1s3 0 1 0 s2s3 1 1 1 0 s3s3 1 0 1 0 s4s3 0 1 1 0 

s1s4 0 0 1 s2s4 1 1 0 1 s3s4 1 0 0 1 s4s4 0 1 0 1 

Notice that, in the above example, the codes for the source sequences, s1s3 and s4s1 are not 
distinct and hence the code is “ Singular in the Large”. Since such singularity properties introduce 
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ambiguity in the decoding stage, we therefore require, in general, for unique decidability of our codes 

that “ The n
th

 extension of the code be non-singular for every finite n.” 
 
4. Instantaneous Codes: 

 

A uniquely decodable code is said to be “ instantaneous” if the end of any code word is 

recognizable with out the need of inspection of succeeding code symbols. That is there is no time lag 
in the process of decoding. To understand the concept, consider the following codes: 

 

Example 6.4:    

Source symbols Code A Code B Code C 

s 1 0 0 0 0 

s 2 0 1 1 0 0 1 

s 3 1 0 1 1 0 0 1 1 

s 4 1 1 1 1 1 0 0 1 1 1 
 

 

Code A undoubtedly is the simplest possible uniquely decipherable code. It is non- singular and all the 

code words have same length. The decoding can be done as soon as we receive two code symbols without 

any need to receive succeeding code symbols. 

 
Code B is also uniquely decodable with a special feature that the 0`s indicate the termination of a code 

word. It is called the “ comma code”. When scanning a sequence of code symbols, we may use the 

comma to determine the end of a code word and the beginning of the other. Accordingly, notice that the 

codes can be decoded as and when they are received and there is, once again, no time lag in the decoding 

process. 

 
Where as, although Code C is a non- singular and uniquely decodable code it cannot be decoded word 

by word as it is received. For example, if we receive ‘ 01’, we cannot decode it as ‘ s2’ until we 

receive the next code symbol. If the next code symbol is ‘ 0’,indeed the previous word corresponds to 

s2, while if it is a ‘ 1’ it may be the symbol s3; which can be concluded so if only if we receive a ‘ 0’in the 

fourth place. Thus, there is a definite ‘ time lag’ before a word can be decoded. Such a ‘ time waste’ is not 
there if we use either Code A or Code B. Further, what we are envisaging is the property by which a 
sequence of code words is uniquely and instantaneously decodable even if there is no spacing between 
successive words. The common English words do not posses this property. For example the words “ 
FOUND”, “ AT” and “ ION” when transmitted without spacing yield, at the receiver, an altogether new 
word” FOUNDATION”! A sufficient condition for such property is that  
“No encoded word can be obtained from each other by the addition of more letters “ . This property 
is called “ prefix property”. 
 

 

Let Xk = xk1xk2….x km, be a code word of some source symbol sk. Then the sequences of 

code symbols, (xk1xk2….x k j),  j ≤ m, are called “prefixes” of the code word. Notice tha t a code 
word of length ‘ m’ will have ‘ m’ prefixes. For example, the code word 0111 has four prefixes, viz; 
0, 01, 011 and 0111.The complete code word is also regarded as a prefix. 

 

Prefix property: “A necessary and sufficient condition for a code t o be ‘instantaneous’ is 

that no complete code word be a prefix of some other code word”. 
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The sufficiency condition follows immediately from the definition of the word “ Instantaneous”. If 
no word is a prefix of some other word, we can decode any received sequence of code symbols 
comprising of code words in a direct manner. We scan the received sequence until we come to 
subsequence which corresponds to a complete code word. Since by assumption it is not a prefix of 
any other code word, the decoding is unique and there will be no time wasted in the process of 
decoding. The “ necessary” condition can be verified by assuming the contrar y and deriving its 

“contradiction”. That is, assume that there exists some word of our code, say xi, which is a prefix of 

some other code word xj. If we scan a received sequence and arrive at a subsequence that corresponds 

to xi, this subsequences may be a complete code word or it may just be the first part of code word xj. 
We cannot possibly tell which of these alternatives is true until we examine some more code symbols 
of the sequence. Accordingly, there is definite time wasted before a decision can be made and hence 
the code is not instantaneous. 
 

 

5.  Optimal codes: 

 
An instantaneous code is said to be optimal if it has “ minimum average word length”, for a source 

with a given probability assignment for the source symbols. In such codes, source symbols with 
higher probabilities of occurrence are made to correspond to shorter code words. Suppose that a 

source symbol si has a probability of occurrence Pi and has a code word of length li assigned to it, 

while a source symbol sj with probability Pj has a code word of length lj. If Pi >Pj then let li<l j. For 

the two code words considered, it then follows, that the average length L1 is given by 
 

L1 =  Pili + Pjlj     …………………….. (6.3) 
 

Now, suppose we interchange the code words so that the code word of length lj corresponds to si and 

that of length li corresponds to sj. Then, the average length becomes 
 

L2 = Pilj + Pjli ……………………… (6 .4) 
 

It then follows, L2 – L 1 = Pi (lj – l i) + Pj (li – l j) 
 

= (Pi – P j) (lj – li) ……………… (6 .5) 
 

Since by assumption Pi>Pj and li<lj, it is clear that (L2 –L 1) is positive. That is assignment of source 

symbols and code word length corresponding to the average length L1 is shorter, which is the 
requirement for optimal codes. 

 

A code that satisfies all the five properties is called an “ irreducible code”. 

 
All the above properties can be arranged as shown in Fig 5.1 which serves as a quick reference of the 
basic requirements of a code. Fig 5.2 gives the requirements in the form of a ‘Tree’ diagram. Notice 

that both sketches illustrate one and the same concept. 
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6.3  Construction of Instantaneous Codes: 

 
Consider encoding of a 5 symbol source into Binary instantaneous codes i.e. 

S = {s1, s2, s3, s4, s5}; X = {0, 1} 
 

We may start by assigning ‘ 0’ to s1 

i.e. s1 0 

 
If this is the case, to have prefix property, all other source symbols must correspond to code words 

beginning with 1. If we let s2 correspond to ‘ 1’, we would be left with no code symbol for encoding 
the remaining three source symbols. We might have 
 

s2   10 

 
This in turn would require the remaining code words to start with  11. If 
 

s3  110; 
 
then the only 3 bit prefix unused is 111 and we might set 
 

s4  1110 

s5  1111 
 
  



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 162 

 

  
 
 

In the above code, notice that the starting of the code by letting s1 correspond ‘ 0’ has cut down the 

number of possible code words. Once we have taken this step, we are restricted to code words 

starting with ‘ 1’. Hence, we might expect to have more freedom if we select a 2-binit code word for 

s1. We now have four prefixes possible 00, 01, 10 and 11; the first three can be directly assigned to s1, s2 

and s3. With the last one we construct code words of length 3. Thus the possible instantaneous code is 
 

s1  00 

s2  01 

s3  10 

s4  110 

s5  111 

 
Thus, observe that shorter we make the first few code words, the longer we will have to make the 
later code words. 

 

One may wish to construct an instantaneous code by pre-specifying the word lengths. The 
necessary and sufficient conditions for the existence of such a code are provided by the ‘Kraft 
Inequality’ . 

 

6.3.1 Kraft Inequality: 
 

Given a source S = {s1, s2…s q}.Let the word lengths of the codes corresponding to these symbols be 

l1, l2  …….l q  and let the code alphabet be X = {x1, x2  …x r}. Then, an instantaneous code for the 
source exists iffy   

 q   
 ∑ r 

lk
   1 ………………….. (6.6) 

k 1 
 

Eq (6.6) is called Kraft Inequality (Kraft – 1949). 

 

Example 6.5: 

 
A six symbol source is encoded into Binary codes shown below. Which of these codes are 
instantaneous? 
 

 Source  Code A   Code B   Code C    Code D  Code  E  
 

 symbol                     
 

 s1   0 0   0    0   0   0   
 

 s2   0 1   1 0 0 0   1 0   1 0 0 0  1 0   
 

 s3   1 0   1 1 0 0   1 1 0   1 1 1 0  1 1 0  
 

 s4   1 1 0   1 1 1 0   1 1 1 0   1 1 1  1 1 1 0  
 

 s5   1 1 1 0   1 1 0 1   1 1 1 1 0   1 0 1 1  1 1 1 1 0  
 

 s6   1 1 1 1   1 1 1 1   1 1 1 1 1   1 1 0 0  1 1 1 1  
 

6       
13 

< 1 
      

7 
   

1 
  

 

 
∑

2
 l k 

 1      1   
 < 1  1 >  1  

 

    

16 
     

            
 

 
k 1 

           8   32   
 

                      
 

 
As a first test we apply the Kraft Inequality and the result is accordingly tabulated. Code E does not 
satisfy Kraft Inequality and it is not an instantaneous code. 
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Next we test the prefix property. For Code D, notice that the complete code word for the symbol s4 is 

a prefix of the code word for the symbol s3. Hence it is not an instantaneous code. However, Code A, 
Code B and Code C satisfy the prefix property and are therefore they are instantaneous codes. 

 

Example 6.6: 
 

Given S={s1,s2,s3,s4,s5,s6,s7,s8,s9} and X={0,1}. Further if l1=l2=2 and 
 

l3=l4=l5 =l6=l7=l8=l9=k. Then from Kraft inequality, we have 
 

2
-2

 + 2
-2

 + 7  2
-k

 ≤ 

1 7 2
-k

≤ 0.5 or 
7

 ≤ 2
-k

 
0.5 


  kmin = 4 

 


  k ≥ log214=3.807 

 

Clearly, if k <4, it is not possible to construct an instantaneous binary code. Thus if  
k≥ 4, Kraft inequality tells us that an instantaneous code does exist but does not tell us how to 

construct such a code. The codes for the symbols when k=4 are shown below: 

 s1   0 0 s4   1 0 0 1  s7    1 1 0 0 

s2 0 1 s5 1 0 1 0 s8 1 1 1 0 

s3 1 0 0 0   s6 1 0 1 1 s9 1 1 1 1 
 
 

6.3.2 McMillan’s Inequality: 

 
Since Instantaneous codes form a sub-class of uniquely decodable codes, we can construct a uniquely 

decodable code with word lengths l1, l2…. lq satisfying the Kraft inequality. McMillan, (1956) first 
proved the “necessary part” of the inequality and t he inequality is also called by his name. 

 

Both inequalities are one and the same. Only difference is in the approach to derive the inequality. 

Since the ideas were totally different and derived independently, the inequality is famous, now-a-
days, as “ Kraft-McMillan inequality” or the K-M inequality. The two implications of the K-M 

inequality are: 

 

(i) Given a set of word lengths, is it possible to construct an instantaneous code? 

Yes-if and only if the word lengths satisfy the K-M inequality.  

 
(ii) Whether an already existing code is uniquely decodable?  

 
Yes – if and only if it satisfies the  K-M inequality. 

 
Observe the importance of the second implication- For a code to be uniquely decodable its 

n
th

extension should be nonsingular. It is not possible to construct all extensions to test this property. Just 
apply the K-M inequality! 

 

6.3.3 Code Efficiency and Redundancy: 
 

Consider a zero memory source, S with q-symbols {s1, s2…  sq} and symbol probabilities {p1, p2 

…  pq} respectively. Let us encode these symbols into r- ary codes (Using a code alphabet of  
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r- symbols) with word lengths l1, l2…l q .We shall find a lower bound for the average length of the code 

words and hence define efficiency and redundancy of the code.  
q 

Let  Q1, Q2 …  Qq be any set of numbers such that Qk ≥ 0 and ∑Qk   1 . Consider  the quantity  
k 1  

 q     
1 

                 
 

H ( S )  ∑ p   log                  
 

                      

   k    

Qk 
                  

 k 1                       
 

q 
 1 

   
q   

 1 
   q   

 Qk  
    

 

      

 ∑ pk 
     

 

                
 

 ∑ pk  log  

∑  

pk log          

   log        
 

k 1  pk   k 1    Qk  k 1    
P

k     
 

q    Qk     q    Qk       
 

q q 
 

 
 

  
 

 
 

     
  

 
 

       
 

    

 loge ∑   

  loge ∑Qk  ∑ pk  0   loge ∑ pk ln     
p

k  
pk 

1  

k 1     
p

k   k 1           k 1 k 1   
 

 q 
 1 and 

q 
 1,by assumption ) 

    
 

.........( as ∑ Pk ∑Qk     
 

k 1       k 1                
 

Thus it  follows that 
  

H ( S )  
 q 

P log 
 
1 

   

…………………… (6.7) 
 

   ∑     
 

         

              
k 1 

k   
Qk 

    
 

                     
 

Equality holds iffy Qk = pk. Eq. (5.21) is valid for any set of numbers Qk that are non negative and 
sum to unity. We may then choose: 
 

Q  
 

r 
l k   

…………………… (6.8) 
 

      
 

 

q        

k           
 

  ∑
r
 l k     

 

  k 1       
 

and obtain            
 

H ( s )  
 q   q 

lk 
  

 

 ∑ p  log r 
lk

   ∑r   
 

   k 1 k k 1    
 

        
 

q 
p 

     q    
 

∑ l k log r  log ∑ r 
lk   

 

 k 
 

   

k 1 
 

 

  

k 1       
 

      q  q   
 

i .e   H ( S )  log r ∑ pk lk   log ∑r 
l

 
k
 ……………………..  (6.9) 

 

      k 1  k 1  
 

Defining            
 

L  
q          

 

∑ pk lk   …………………. (6.10) 
 

 k 1          
 

 
Which gives the average length of the code words, and observing that the second term in Eq.(5.23) is 
    q  

 

either negative or at most zero (as from Kraft Inequality ∑
r
 

lk
    1  and logarithm of a number 

 

    k 1  
 

which is less than unity is always negative) we conclude:   
 

H(S) ≤ L log r …………………  (6.11) 
 

Or  L ≥ 
H ( S )  

…………………. 
 

(6.12)  

log r 
 

 

    
 

Notice that achievement of the lower bound is possible for the particular case when: 
 

q 
pk   r 

lk 

  
 

i)   ∑r 
l

k    1    and   (ii)   
 

k 1    
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As, if this is the case Qk 
that:  

  1  
 

lk  
 

 
 

  

 logr   
 

  
p

k 
 

 
 
 
 

= pk, hence for the equality to hold it follows that we must choose lk such 
 
 

……………………… (6.13) and 
lk must be an integer for all k = 1, 2…  q. 
 
Eq. (6.11) can be re-written as:   

 

 H ( S )  log r …………………. (6.14)  
   

 L   
 

 
The LHS of Eq. (6.14) is simply (The entropy of the source in bits per source symbol) ÷ (no. of code 

symbols per source symbol) or bits per code symbol; which is nothing but the actual entropy of the 

code symbols. RHS is the maximum value of this entropy when the code symbols are all equi-

probable. Thus we can define the code efficiency based on Eq. (6.14) as below: 

 
“ Code efficiency is the ratio of the average information per symbol of the encoded language to the 
maximum possible information per code symbol”. Mathematically, we write  

Code efficiency,   H ( S ) : log r             
 

                

    c   

L 
                 

 

                        
 

Or 
 

c 
H ( S )       

…………………… 
       

(6.15) 
 

 

 

     

 

    

  

       
 

                  

     L log r                 
 

Accordingly,  Redundancy of the code, Ec=1-c ……………      (6.16). 
 

Example 6.7:                            
 

                     1 1 1  1 
 

Let the source have four messages S= {s1, s2, s3, s4} with P=  ,  ,  ,   

 

     

                     
2
 4 8  

8
 

 

 H(S) = 1 log 2  log 4  2 x 1 log 8 =1.75 bits/sym.          
 

             

2             8               
 

If S itself is assumed to be the alphabet then we have          
 

L=1, r=4 and  1.75   0.875 , i.e.   87.5% , and Ec=12.5%      
 

       

  c  log 4           c          
 

                          
 

Suppose the messages are encoded into a binary alphabet, X= {0, 1} as   
 

pk Code      lk                    
 

s1 1/2      0       l1=1             
 

s2 1/4      1 0      l2=2             
 

s3 1/8      1 1 0      l3=3             
 

s4 1/8   1 1 1     l4=3             
 

  4       
1  2. 1  3. 1  3. 1 

          
 

We have L= ∑ l p  =1.  =1.75binits/symbol      
 

2 
         

  k 1 
k
  k     4 8 8           
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Since r=2, c   
H ( S ) 

 
1.75 

=1  

 

1.75 log 2  2 
 

 L log r  
 

i.e.c   100% , and hence Ec=1- c   0% 

 

Thus by proper encoding, the efficiency can be increased. 

 

Example 6.8: 
 

1  1  1  1 
Suppose the probabilities of the messages in Example 6.7 are changed to   P= ,   ,   , 

3  3  6  6 

Then, H(S) =2  
1

 log 3  2  
1

 log 6 
3 6  

log 3+ 
1

 =1.918 
bits/sym 3 

For the codes listed in Example 6.7, we have:  

L= 1. 1  2. 1  3. 1  3. 1 = 2binits / symbol, and c H ( S )  1.918  0.959 or 95.9%  

       

3 3 6 6   L log r 2 log 2  2 
  

Ec =1-c   0.041 or 4.1%  
Notice that in Example 6.7, the equality L= H(S) /log r is strict since lk = log1/pk and in Example 6.8, 

the inequality L> H(S)/log r is strict as lk ≠log1/pk. 
 

6.3.4 Shannon’s First Theorem (Noiseless Coding Theorem): 

 
Eq. (6.12) suggests the lower bound on L, the average word length of the code, expressed as a 

fraction of code symbols per source symbol. However, we know that each individual code word will 
have an integer number of code symbols. Thus, we are faced with the problem of what to choose for 

the value of lk, the number of code symbols in the code word corresponding to a source symbol sk,  
                         1   

 

when the quantity in Eq. (6.13)    
viz. lk = logr  

   
 

 

       

      is not an integer. Suppose we choose lk  to be  

                         
p

k 
 

                    1       
 

the next integer value greater than log r  
  

 
     

 

        

 

pk 
, i.e.       

                          
 

     
log r 

1 
 lk   logr 

1  
 1 

     
………………   (6.17) 

 

      

pk pk 
      

 

                          
 

Eq. (6.17) also satisfies the Kraft inequality, since the left inequality gives: 
 

 
1  r 

lk
   , or p 

 

 r 
lk  . from which 

 q  

 1  
q  

lk 
 

  ∑ p ∑ r  

  

k 
 

 pk 
             

k 1 
k  

k 1 
  

 

                   
 

            
log 

 1              
 

            

2 
               

 

Further , since logr 
 

1  pk , Eq (6.17) can be re-written as: 
 

     
 

        

        pk   log2 r            
 

   log( 1 / pk )  lk  log( 1 / pk )  1      
…………………….   (6.18)  

           

   logr        logr            
 

Multiplying Eq. (6.18) throughout by pk and summing for all values of k, we have 
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q pk log 
1   

 q q pk log 
1  

q 
 

 

pk pk 
 

 

∑   
 ∑ pk lk   ∑  

 ∑ pk  , or  
 

       
 

k 1  logr k 1 k 1 logr  k 1  
 

           

  H ( S )  L  H ( S )  1    
………………….. (6.19)  

        

  logr  logr       
 

 

To obtain better efficiency, one will use the n
th

 extension of S, giving Ln as the new average word 

length. Since Eq. (5.33) is valid for any zero- memory source, it is also valid for S
n
, and hence, we 

have 

 

H ( S 
n
 )  L  H ( S 

n
 )  1 ………………… (6.20)  

     

logr  n  logr    
 

      
 

 

Since H (S
n

) = n H(S), Eq. (6.20 reduces to 
 

H ( S ) 
 

Ln 
 

H ( S ) 
 

1 
………………… (6.21)  

logr n logr n 
 

     
 

 

It follows from Eq. (6.21) with n  ∞ 
 

 

lim 
Ln 

 H ( S )  …………………….. (6.22)  
n logr 

 

n    
 

 

Here Ln/n is the average number of code alphabet symbols used per single symbol of S, when the 

input to the encoder is n-symbol message for the extended source S
n
. But Ln  L, where L is the  

  

     n 
 

average  word  length  for  the  source  S  and  in  general Ln  L. The code  capacity  is  now  
  

   n   
 

 Ln     
 

 

 

log r  C  bits/message of the channel and for successful transmission of messages through    

 n     
  

the channel we have: 

 

  L  
 

H ( S )   
n logr  C bits/message ……………….. (6.23)  

  

  n  
 

 

Eq. (6.21) is usually called the “ Noiseless coding Theorem” and is the essence of “ Shannon’s First 

Fundamental Theorem”. Notice that in the  above  discussions we have not considered any effects 

of noise on the codes. The emphasis is only on how to most efficiently encode our source. The 

theorem may be stated as belo  

CYCLIC CODES  

 

"Binary cyclic codes” form a sub class of linear block codes. Majority of important linear 

block codes that are known to-date are either cyclic codes or closely related to cyclic codes. Cyclic 

codes are attractive for two reasons: First, encoding and syndrome calculations can be easily  
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implemented using simple shift registers with feed back connections. Second, they posses well 
defined mathematical structure that permits the design of higher-order error correcting codes. 

 
A binary code is said to be "cyclic" if it satisfies: 

 
1. Linearity property – sum of two code words is also a code word.  

2. Cyclic property – Any lateral shift of a code word is also a code  word.  

 
The second property can be easily understood from Fig, 7.1. Instead of writing the code as a 

row vector, we have represented it along a circle. The direction of traverse may be either clockwise or 
counter clockwise (right shift or left shift). 

 

For example, if we move in a counter clockwise direction then starting at ‘ A’ the code word 

is 110001100 while if we start at B it would be 011001100. Clearly, the two code words are related in that 

one is obtained from the other by a cyclic shift. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If the n - tuple, read from ‘ A’ in the CW direction in Fig 7.1, 
 

v = (vo, v1, v2, v3, vn-2, vn-1) ………………………  (7.1) 

is a code vector, then the code vector, read from B, in the CW direction, obtained by a one bit cyclic 
right shift: 
 

v
(1)

 = (vn-1  , vo, v1, v2, … v  n-3,vn-2,) …………………(7.2) 
 
is also a code vector. In this way, the n - tuples obtained by successive cyclic right shifts:  

v(2) = (vn-2, vn-1, vn, v0, v1…  vn-3) …………………   (7.3 a) 

v(3) = (vn-3 ,vn-2, vn-1, vn, .... vo, v1, vn-4) ………………(7.3 b) 
M    

v
(i)

 = (vn-i, vn-i+1,…v  n-1, vo, v1,…. v  n-i-1) ……………… (7.3 c) 
 
are all code vectors. This property of cyclic codes enables us to treat the elements of each code vector 
as the co-efficients of a polynomial of degree (n-1). 
 

This is the property that is extremely useful in the analysis and implementation of these 
codes. Thus we write the "code polynomial' V(X) for the code in Eq (7.1) as a vector polynomial as: 
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V(X) = vo + v1 X + v2 X
2
 + v3 X

3
 +…+ v  i-1 X

i-1
 +... + vn-3 X

n-3
 + vn-2 X

n-2
 + vn-1 X

n-1
 ……..   (7.4) 

 
Notice that the co-efficients of the polynomial are either '0' or '1' (binary codes), i.e. they belong to 
GF (2) as discussed in sec 6.7.1. 

 
. Each power of X in V(X) represents a one bit cyclic shift in time. 

 
. Therefore multiplication of V(X) by X maybe viewed as a cyclic shift or rotation to the right subject 

to the condition X
n
 = 1. This condition (i) restores XV(X) to the degree (n-1) (ii) Implies that right 

most bit is fed-back at the left. 
 

. This special form of multiplication is called "Multiplication modulo “ X
n
 + 1” 

 
. Thus for a single shift, we have 
 

XV(X) = voX + v1 X
2
 + v2 X

3
 + ........ + vn-2 X

n-1
 + vn-1 X

n
 

 

(+ vn-1 + vn-1) … (Manipulate   A + A =0 Binary Arithmetic) 
 

= vn-1 + v0 X + v1 X
2
 + + vn-2 X

n-1
 + vn-1(X

n
 + 1) 

 

=V 
(1)

 (X) = Remainder obtained by dividing XV(X) by X
n
 + 1 

(Remember: X mod Y means remainder obtained after dividing X by Y) 
 
Thus it turns out that 
 

V 
(1)

 (X) = vn-1 + vo X + v1 X
2
 +..... + vn-2 X

n-1
 ………………… (7.5) 

 I   

is the code polynomial for v
(1)

 . We can continue in this way to arrive at a general format:  

X 
i
 V(X) = V 

(i)
 (X) + q (X) (X

n
 + 1) ……………………… (7.6) 

    

Remainder Quotient   

Where    

V 
(i)

  (X) = vn-i  + vn-i+1X + vn-i+2X
2
  + …v  n-1X 

i
+ …v 0X

i-1
  +v1X

i+1
+…v  n-i-2X

n-2
  +vn-i-1X

n-
 ……… 

(7.7)     
7.1 Generator Polynomial for Cyclic Codes:  

 

An (n, k) cyclic code is specified by the complete set of code polynomials of degree  (n-1) 

and contains a polynomial g(X), of degree (n-k) as a factor, called the "generator polynomial" of the 

code. This polynomial is equivalent to the generator matrix G, of block codes. Further, it is the only 

polynomial of minimum degree and is unique. Thus we have an important theorem 
 

Theorem 7.1 "If g(X) is a polynomial of degree (n-k) and is a factor of (X
n
 +1) then g(X) generates an 

(n, k) cyclic code in which the code polynomial V(X) for a data vector u = (u0, u1… u k -1) is generated 
by 

 

V(X) = U(X) g(X) …………………….. (7.8) 
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Where U(X) = u0 + u1 X + u2 X
2
 + ... + uk-1 X

k-I
 ………………….. (7.9) 

 
is the data polynomial of degree (k-1). 

 
The theorem can be justified by Contradiction: - If there is another polynomial of same degree, then 

add the two polynomials to get a polynomial of degree < (n, k) (use linearity property and binary 

arithmetic). Not possible because minimum degree is (n-k). Hence g(X) is unique 
 

Clearly, there are 2
k
 code polynomials corresponding to 2

k
 data vectors. The code vectors 

corresponding to these code polynomials form a linear (n, k) code. We have then, from the theorem 

 
nk 1     

g( X )  1  ∑ gi X 
i
  X 

nk
  ……………………  (7.10) 

i 1     

Asg(X) = go + g1 X + g2 X
2
 +……. + gn-k-1 X

n-k-1
 + gn-k X

n-k
 …………… (7.11) 

is a polynomial of minimum degree, it follows that g0 = gn-k  = 1 always and the remaining co- 

efficients may be either' 0' of '1'. Performing the multiplication said in Eq (7.8) we have: 

U (X) g(X) = uo g(X) + u1 X g(X) +…+u  k-1X
k-1

g(X) ……………. (7.12) 
 

Suppose u0=1 and u1=u2= …=u k-1=0. Then from Eq (7.8) it follows g(X) is a code word polynomial 

of degree (n-k). This is treated as a ‘ basis code polynomial’ (All rows of the G matrix of a block code, 
being linearly independent, are also valid code vectors and form ‘ Basis vectors’ of the code). 

Therefore from cyclic property X
i
 g(X) is also a code polynomial. Moreover, from the linearity 

property - a linear combination of code polynomials is also a code polynomial. It follows therefore 
that any multiple of g(X) as shown in Eq (7.12) is a code polynomial. Conversely, any binary 
polynomial of degree  (n-1) is a code polynomial if and only if it is a multiple of g(X). The code 
words generated using Eq (7.8) are in non-systematic form. Non systematic cyclic codes can be 
generated by simple binary multiplication circuits using shift registers. . 

 

In this book we have described cyclic codes with right shift operation. Left shift version can 
be obtained by simply re-writing the polynomials. Thus, for left shift operations, the various 

polynomials take the following form 
 

U(X) = uoX
k-1

 + u1X
k-2

 +……  + u k-2X + uk-1 ………………….. (7.13 a) 

V(X) = v0 X
n-1

 + v1X
n-2

 +…. + v n-2X + vn-1 ……………… (7.13 b) 

g(X) = g0X
n-k

 + g1X
n-k-1

 +…..+g n-k-1 X + gn-k ……………… (7.13 c) 

nk     

= X nk  ∑ gi X 
nk

 
i

  gnk …………………  (7.13d) 
i 1 

 

Other manipulation and implementation procedures remain unaltered. 
 
 
 
 
7.2 Multiplication Circuits:  
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Construction of encoders and decoders for linear block codes are usually constructed with 

combinational logic circuits with mod-2 adders. Multiplication of two polynomials A(X) and B(X) 

and the division of one by the other are realized by using sequential logic circuits, mod-2 adders and 
shift registers. In this section we shall consider multiplication circuits. 

 
As a convention, the higher-order co-efficients of a polynomial are transmitted first. This is 

the reason for the format of polynomials used in this book. 
 

For the polynomial: A(X) = a0 + a1 X + a2 X
2
 +...+ an-1X

n-1
 …………… (7.14) 

 

where ai’s are either a ' 0' or a '1', the right most bit in the sequence (a0, a1, a2 ... an-1) is transmitted 
first in any operation. The product of the two polynomials A(X) and B(X) yield: 

 

C(X) = A(X) B(X) 
 

= (a0 + a1 X + a2 X
2
 +… .................. + a  n-1X

n-1
) (b0 + b1 X + b2X

2
 +…+ b  m-1 X

m-1
) 

 

= a0b0+ (a1b0+a0b1) X + (a0b2 + b0a2+a1b1) X
2
 +…. + (a  n-2bm-1+ an-1bm-2) X

n+m -3
 +an-1bm-1X

n+m -2
 

 

This product may be realized with the circuits of Fig 7.2 (a) or (b), where A(X) is the input and the co-

efficient of B(X) are given as weighting factor connections to the mod - 2 .adders. A '0' indicates no 

connection while a '1' indicates a connection. Since higher order co-efficients are first sent, the  
highest order co-efficient an-1 bm-1 of the product polynomial is obtained first at the output of Fig 

7.2(a). Then the co-efficient of X
n+m-3

 is obtained as the sum of {an-2bm-1 + an-1 bm-2}, the first 
term directly and the second term through the shift register SR1. Lower order co-efficients are then 
generated through the successive SR's and mod-2 adders. After (n + m - 2) shifts, the SR's contain {0, 

0… 0, a 0, a1} and the output is (a0 b1 + a1 b0) which is the co-efficient of X. After (n + m-1) shifts, 

the SR's contain (0, 0, 0,0, a0) and the out put is a0b0. The product is now complete and the contents 
of the SR's become (0, 0, 0 …0, 0 ). Fig 7.2(b) performs the multiplication in a similar way but the 
arrangement of the SR's and ordering of the co-efficients are different (reverse order!). This 
modification helps to combine two multiplication operations into one as shown in Fig 7.2(c). 

 

From the above description, it is clear that a non-systematic cyclic code may be generated using (n-k) 

shift registers. Following examples illustrate the concepts described so far. 
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Example 7.1: Consider that a polynomial A(X) is to be multiplied by 

 

B(X) = 1 + X + X
3
 + X

4
 + X

6
 

 

The circuits of Fig 7.3 (a) and (b) give the product C(X) = A(X). B(X) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 7.2: Consider the generation of a (7, 4) cyclic code. Here (n- k) = (7-4) = 3 and we have to 

find a generator polynomial of degree 3 which is a factor of X
n

 + 1 = X
7
 + 1. 

 

To find the factors of’ degree 3, divide X
7
+1 by X

3
+aX

2
+bX+1, where 'a' and 'b' are binary 

numbers, to get the remainder as abX
2
+ (1 +a +b) X+ (a+b+ab+1). Only condition for the remainder to 

be zero is a +b=1 which means either a = 1, b = 0 or a = 0, b = 1. Thus we have two possible 
polynomials of degree 3, namely 
 

g1 (X) = X
3
+ X

2
+ 1 and g2 (X) = X

3
+X+1 
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In fact, X
7
 + 1 can be factored as: 

 

(X
7
+1) = (X+1) (X

3
+X

2
+1) (X

3
+X+1) 

 
Thus selection of a 'good' generator polynomial seems to be a major problem in the design of cyclic 
codes. No clear-cut procedures are available. Usually computer search procedures are followed. 
 

Let us choose g (X) = X
3
+ X + 1 as the generator polynomial. The encoding circuits are shown in 

Fig 7.4(a) and (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To understand the operation, Let us consider u = (10 1 1) i.e. 
 

U (X) = 1 +X
2
+X

3
. 

 

We have V (X) = (1 +X
2
+X

3
) (1 +X+X

3
). 

 

= 1 +X
2
+X

3
+X+X

3
+X

4
+X

3
+X

5
+X

6
 

 

= 1 + X + X
2
+ X

3
+ X

4
+ X

5
+ X

6
   because (X

3
+ X

3
=0) 

 
=> v = (1 1 1 1 1 1 1) 

 
The multiplication operation, performed by the circuit of Fig 7.4(a), is listed in the Table below step 
by step. In shift number 4, ‘ 000’ is introduced to flush the registers. As seen from the tabulation the 

product polynomial is: 

 

V (X) = 1 +X+X
2
+X

3
+X

4
+X

5
+X

6
, 

 
and hence out put code vector is v = (1 1 1 1 1 1 1), as obtained by direct multiplication. The reader 
can verify the operation of the circuit in Fig 7.4(b) in the same manner. Thus the multiplication 
circuits of Fig 7.4 can be used for generation of non-systematic cyclic codes. 
 
 
 
 

Table showing sequence of computation 
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 Shift Input Bit Contents of shift Out Remarks 
 

 Number Queue shifted  registers.  put  
 

   

IN 
        

   SRI  SR2  SR3   
 

 0 0001011 - 0  0  0 - Circuit In reset mode 
 

 1 000101 1 1  0  0 1 Co-efficient of  X
6
 

 

 2 00010 1 1  1  0 1 Co-efficient of X
5
 

 

 3 0001 0 0  1  1 1 X
4
 co-efficient 

 

 *4 000 1 1  0  1 1 X
3
 co-efficient 

 

 5 00 0 0  1  0 1 X
2
 co-efficient 

 

 6 0 0 0  0  1 1 X
1
 co-efficient 

 

 7 - 0 0  0  0 1 X
0
co-efficient 

 

            

 

7.3 Dividing Circuits:  
 

As in the case of multipliers, the division of A (X) by B (X) can be accomplished by using shift 
registers and Mod-2 adders, as shown in Fig 7.5. In a division circuit, the first co-efficient of the 

quotient is (an-1 (bm -1) = q1, and q1.B(X) is subtracted from A (X). This subtraction is carried out by 
the feed back connections shown. This process will continue for the second and subsequent terms. 
However, remember that these coefficients are binary coefficients. After (n-1) shifts, the entire 
quotient will appear at the output and the remainder is stored in the shift registers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is possible to combine a divider circuit with a multiplier circuit to build a “composite 

multiplier-divider circuit” which is useful in vari ous encoding circuits. An arrangement to 
accomplish this is shown in Fig 7.6(a) and an illustration is shown in Fig 7.6(b). 
 

We shall understand the operation of one divider circuit through an example. Operation of 
other circuits can be understood in a similar manner. 

 

Example7.3: 
 

Let A(X) = X
3
+X

5
+X

6
, A= (0001011), B(X) = 1 +X+X

3
. We want to find the quotient and 

remainder after dividing A(X) by B(X). The circuit to perform this division is shown in Fig 7.7, drawn 
using the format of Fig 7.5(a). The operation of the divider circuit is listed in the table: 
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Table Showing the Sequence of Operations of the Dividing circuit 
 

            

Shift Input Bit Contents  of shift Out Remarks  
 

Number Queue shifted Registers.  put    
 

  

IN 
         

  SRI SR2  SR3     
 

0 0001011 - 0 0  0 - Circuit in reset mode  
 

           

1 000101 1 1 0  0 0 Co-efficient of X
6
  

 

2 00010 1 1 1  0 0 Co-efficient of X
5
  

 

3 0001 0 0 1  1 0 X
4
 co-efficient  

 

4 *000 1 0 1  1 1 X3 co-efficient  
 

5 00 0 1 1  1 1 X
2
 co-efficient  

 

6 0 0 1 0  1 1 X1 co-efficient  
 

7 - 0 1 0  0 1 X
o
 co-efficient  

 

            

 
The quotient co-efficients will be available only after the fourth shift as the first three shifts 

result in entering the first 3-bits to the shift registers and in each shift out put of the last register, SR3, 
is zero. 
 

The quotient co-efficient serially presented at the out put are seen to be (1111) and hence the 

quotient polynomial is Q(X) =1 + X + X
2
 + X

3
. The remainder co-efficients are (1 0 0) and the 

remainder polynomial is R(X) = 1. The polynomial division steps are listed in the next page. 
 

Division Table for Example 7.3:  
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7.4 Systematic Cyclic Codes:  
 

Let us assume a systematic format for the cyclic code as below: 
 

v = (p0, p1, p2  … p  n-k-1, u0, u1, u2… u  k-1) 
(7.15) 
 
The code polynomial in the assumed systematic format becomes: 
 

V(X) = p0 + p1X + p2X
2
 + … +p n-k-1X

n-k-1
 +u0X

n-k
 + u1X

n-k+1
 +… +u  k-1X

n-1
 …………... 

= P(X) + X
n-k

U(X) ……………………… 
 
Since the code polynomial is a multiple of the generator polynomial we can write: 

 

V (X) = P (X) +X
n-k

 U (X) = Q (X) g (X) ......................... 
 

⇒ 
X 

nk
U ( X ) 

 Q( X )  
P( X ) 

 

  
……………….  

g( X ) 
  

  g( X ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

……………… 
 
 
 
 
 
(7.16) 

 
(7.17) 

 
 
 

 

(7.18) 
 
 

(7.19) 

 

Thus division of X
n-k

 U (X) by g (X) gives us the quotient polynomial Q (X) and the remainder 
polynomial P (X). Therefore to obtain the cyclic codes in the systematic form, we determine the 

remainder polynomial P (X) after dividing X
n-k

 U (X) by g(X). This division process can be easily 

achieved by noting that "multiplication by X
n-k

 amounts to shifting the sequence by (n-k) bits". 
Specifically in the circuit of Fig 7.5(a), if the input A(X) is applied to the Mod-2 adder 
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after the (n-k) 
th

 shift register the result is the division of  X
n-k

 A (X) by B (X). 
 

Accordingly, we have the following scheme to generate systematic cyclic codes. The generator 
polynomial is written as: 
 

g (X) = 1 +glX+g2X
2
+g3X

3
+…+g  n-k-1 X

n-k-1
 +X

n-k
 …………… ( 7.20) 

 

The circuit of Fig 7.8 does the job of dividing X
n-k

U (X) by g(X). The following steps describe the 
encoding operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. The switch S is in position 1 to allow transmission of the message bits directly to an 

out put shift register during the first k-shifts.   
2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the 

(n-k) stage encoding shift register  

3. After transmission of the k
th

 message bit the GATE is turned OFF and the switch S is 
moved to position 2.   

4. (n-k) zeroes introduced at "A" after step 3, clear the encoding register by moving the 
parity bits to the output register  

5. The total number of shifts is equal to n and the contents of the output register is the 

code word polynomial V (X) =P (X) + X
n-k

 U (X).  
6. After step-4, the encoder is ready to take up encoding of the next message input  

 
Clearly, the encoder is very much simpler than the encoder of an (n, k) linear block code and the 

memory requirements are reduced. The following example illustrates the procedure. 
 
Example 7.4: 
 
Let u = (1 0 1 1) and we want a (7, 4) cyclic code in the systematic form. The generator polynomial 

chosen is g (X) = 1 + X + X3 
 

For the given message, U (X) = 1 + X
2
+X

3
 

 

X
n-k

 U (X) = X
3
U (X) = X

3
+ X

5
+ X

6
 

 

We perform direct division X
n-k

U (X) by g (X) as shown below. From direct division observe that 

p0=1, p1=p2=0. Hence the code word in systematic format is: 
 

v = (p0, p1, p2; u0, u1, u2, u3) = (1, 0, 0, 1, 0, 1, 1) 
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The encoder circuit for the problem on hand is shown in Fig 7.9. The operational steps are as follows: 
 

     

Shift Number Input Queue Bit shifted IN Register contents Output 

0 1011 - 000 - 

1 101 1 110 1 

2 10 1 101 1 

3 1 0 100 0 

4 - 1 100 1 
     

 
After the Fourth shift GATE Turned OFF, switch S moved to position 2, and the parity bits 

contained in the register are shifted to the output. The out put code vector is v = (100 1011) which 

agrees with the direct hand calculation. 
 

 

7.6 Syndrome Calculation - Error Detection and Error Correction:  
 

Suppose the code vector v= (v0, v1, v2 …v n-1) is transmitted over a noisy channel. Hence the 
received vector may be a corrupted version of the transmitted code vector. Let the received code 

vector be r = (r0, r1, r 2…r n-1). The received vector may not be anyone of the 2
k
 valid code vectors. 

The function of the decoder is to determine the transmitted code vector based on the received vector. 

 

The decoder, as in the case of linear block codes, first computes the syndrome to check whether or 

not the received code vector is a valid code vector. In the case of cyclic codes, if the syndrome is 

zero, then the received code word polynomial must be divisible by the generator polynomial. If the 

syndrome is non-zero, the received word contains transmission errors and needs error correction. Let 

the received code vector be represented by the polynomial 
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R(X) = r0+r1X+r2X
2
+…+r  n-1X

n-1
 

 
Let A(X) be the quotient and S(X) be the remainder polynomials resulting from the division of 

R(X) by g(X) i.e. 

 

R( X ) 
 A( X )  

S( X ) 
……………….. (7.21)  

g( X ) g( X ) 
 

   
 

 

The remainder S(X) is a polynomial of degree (n-k-1) or less. It is called the "Syndrome polynomial". 

If E(X) is the polynomial representing the error pattern caused by the channel, then we have: 
R(X) =V(X) + E(X) ………………….. (7.22) 

 
And it follows as V(X) = U(X) g(X), that: 

 

E(X) =  [A(X)  +  U(X)]  g(X)  +S(X) ………………. 
(7.23) 

 
That is, the syndrome of R(X) is equal to the remainder resulting from dividing the error pattern by 

the generator polynomial; and the syndrome contains information about the error pattern, which can 
be used for error correction. Hence syndrome calculation can be accomplished using divider circuits 

discussed in Sec 7.4, Fig7.5. A “ Syndrome calculator” is shown in Fig 7.10. 
 
 
 
 
 
 
 
 
 
 
 
The syndrome calculations are carried out as below: 

 
1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received vector is 

entered into the register 

 

2 After the entire received vector is shifted into the register, the contents of the register will be 

the syndrome, which can be shifted out of the register by turning GATE-1 ON and GATE-2 
OFF. The circuit is ready for processing next received vector. 

 

Cyclic codes are extremely well suited for 'error detection' .They can be designed to detect 

many combinations of likely errors and implementation of error-detecting and error correcting 

circuits is practical and simple. Error detection can be achieved by employing (or adding) an 

additional R-S flip-flop to the syndrome calculator. If the syndrome is nonzero, the flip-flop sets and 

provides an indication of error. Because of the ease of implementation, virtually all error detecting 

codes are invariably 'cyclic codes'. If we are interested in error correction, then the decoder must be 

capable of determining the error pattern E(X) from the syndrome S(X) and add it to R(X) to determine 

the transmitted V(X). The following scheme shown in Fig 7.11 may be employed for the purpose. The 

error correction procedure consists of the following steps: 

 

Step1. Received data is shifted into the buffer register and syndrome registers with switches 
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SIN closed and SOUT open and error correction is   performed with SIN open and SOUT 

closed. 
 

Step2. After the syndrome for the received code word is calculated and placed in the syndrome 

register, the contents are read into the error detector. The detector is a combinatorial circuit 

designed to output a ‘ 1’ if and only if the syndrome corresponds to a correctable error 

pattern with an error at the highest order position X
n-l

. That is, if the detector output is a '1' 

then the received digit at the right most stage of the buffer register is assumed to be in 

error and will be corrected. If the detector output is '0' then the received digit at the right 

most stage of the buffer is assumed to be correct. Thus the detector output is the estimate 

error value for the digit coming out of the buffer register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step3. In the third step, the first received digit in the syndrome register is shifted right once. If the 

first received digit is in error, the detector output will be '1' which is used for error 

correction. The output of the detector is also fed to the syndrome register to modify the 

syndrome. This results in a new syndrome corresponding to the ‘ altered ‘received code 

word shifted to the right by one place. 

 
Step4. The new syndrome is now used to check and correct the second received digit, which is 

now at the right most position, is an erroneous digit. If so, it is corrected, a new syndrome 

is calculated as in step-3 and the procedure is repeated. 

 
Step5. The decoder operates on the received data digit by digit until the entire received code word 

is shifted out of the buffer. 

 
At the end of the decoding operation, that is, after the received code word is shifted out of the 

buffer, all those errors corresponding to correctable error patterns will have been corrected, and the 

syndrome register will contain all zeros. If the syndrome register does not contain all zeros, this 

means that an un-correctable error pattern has been detected. The decoding schemes described in Fig 

7.10 and Fig7.11 can be used for any cyclic code. However, the practicality depends on the 

complexity of the combinational logic circuits of the error detector. In fact, there are special classes 

of cyclic codes for which the decoder can be realized by simpler circuits. However, the price paid for  
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such simplicity is in the reduction of code efficiency for a given block size. 

 

7.7 Bose- Chaudhury - Hocquenghem (BCH) Codes:  

 
One of the major considerations in the design of optimum codes is to make the block size 

n smallest for a given size k of the message block so as to obtain a desirable value of dmin. Or for 

given code length n and efficiency k/n, one may wish to design codes with largest dmin. That means 
we are on the look out for the codes that have 'best error correcting capabilities". The BCH codes, as 
a class, are one of the most important and powerful error-correcting cyclic codes known. The most 
common BCH codes are characterized as follows. Specifically, for any positive integer m  3, and t < 

2
m

 - 1) / 2, there exists a binary BCH code (called 'primitive' BCH code) with the following 
parameters: 
 

Block length : n = 2
m

-l 

Number of message bits  : k  n - mt 

Minimum distance : dmin  2t + 1 
 

Clearly, BCH codes are "t - error correcting codes". They can detect and correct up to‘ t’ 

random errors per code word. The Hamming SEC codes can also be described as BCH codes. The 

BCH codes are best known codes among those which have block lengths of a few hundred or less. The 

major advantage of these codes lies in the flexibility in the choice of code parameters viz: block length 

and code rate. The parameters of some useful BCH codes are given below. Also indicated in the table are 

the generator polynomials for block lengths up to 31. 

 

NOTE: Higher order co-efficients of the generator polynomial are at the left. For example, if we are 
interested in constructing a (15, 7) BCH code from the table we have (111 010 001) for the co-efficients 

of the generator polynomial. Hence 
 

g(X) = 1 + X
4
 + X

6
 + X

7
 + X

8
 

 
      

n k t Generator Polynomial 

7 4 1  1 011 
     

15 11 1  10 011 

15 7 2 111 010 001 

15 5 3 10 100 110 111 

31 26 1  100 101 

31 21 2 11 101 101 001 

31 16 3 1 000 111 110 101 111 

31 11 5 101 100 010 011 011 010 101 

31 6 7 11 001 011 011 110 101 000 100 111 
      

 
For further higher order codes, the reader can refer to Shu Lin and Costello Jr. The alphabet of 

a BCH code for n = (2
m

-1) may be represented as the set of elements of an appropriate Galois field, 

GF(2
m

) whose primitive element is .The generator polynomial of the t-error correcting BCH code is the 

least common multiple (LCM) of Ml(X), M2(X),… M2t(X), where Mi(X) is the minimum polynomial of 

 
i
, i = 1, 2…2t . For further details of the procedure and discussions the reader can refer to J.Das etal. 

 
There are several iterative procedures available for decoding of BCH codes. Majority of them 

can be programmed on a general purpose digital computer, which in many practical applications form 
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an integral part of data communication networks. Clearly, in such systems software implementation 
of the algorithms has several advantages over hardware implementation 
 

 

Review questions: 

 

1. Write a standard array for Systematic Cyclic Codes code  

 
2. Explain the properties of binary cyclic codes.  

 
3. With a neat diagrams explain the binary cyclic encoding and decoding  

 
4. Explain how meggit decoder can be used for decoding the cyclic codes.  

 
5. Write short notes on the following  

(iii) BCH codes   
6. Draw the general block diagram of encoding circuit using (n-k) bit shift register and explain 

its operation.   
7. Draw the general block diagram of syndrome calculation circuit for cyclic codes and explain 

its operation.  
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UNIT – 7 
 

 

Syllabus:  
RS codes, Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and 
Random Error correcting codes. 7 Hours 

 
 
 
 
Text Books:  

Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 
1996. Digital communication, Simon Haykin, John Wiley, 2003. 

 
 
 
 
 
 
 
 

 

Reference Books: 
ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007  
Digital Communications - Glover and Grant; Pearson Ed. 2nd Ed 2008 
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UNIT – 7 

 

Cyclic Redundancy Check (CRC) codes: 

 
Cyclic redundancy .check codes are extremely well suited for "error detection". The two important 
reasons for this statement are, (1) they can be designed to detect many combinations of likely errors.  
(2) The implementation of both encoding and error detecting circuits is practical. Accordingly, all 

error detecting codes used in practice, virtually, are of the CRC -type. In an n-bit received word if a 

contiguous sequence of ‘b-bits’ in which the first and the last bits and any number of intermediate 

bits are received in error, then we say a CRC "error burst' of length ‘b’ has occurred. Such an error 

burst may also include an end-shifted version of the contiguous sequence. 

 
In any event, Binary (n, k) CRC codes are capable of detecting the following error patterns: 

 
1. All CRC error bursts of length (n-k) or less.  

 

2. A fraction of (1 - 2 
(n –k - 1)

 ) of CRC error bursts of length (n – k + 1 ).  
 

3. A fraction (1-2 
(n – k)

 ) of CRC error bursts of length greater than (n – k + 1 ).  
 

4. All combinations of (dmin – 1 ) or fewer errors.  

 
5. All error patterns with an odd number of errors if the generator polynomial 

g (X) has an even number of non zero coefficients.  

 

Generator polynomials of three CRC codes, internationally accepted as standards are listed below. All 

three contain (1 +X) as a prime factor. The CRC-12 code is used when the character lengths is 6-bits. 

The others are used for 8-bit characters. 
 

* CRC-12 code: g (X) = 1 + X + X
2
+X

3
 + X

11
 + X

12
 * 

 

*CRC-16 code: g (X) = 1 +X
2
 + X

15
 + X

16
 

*CRC-CCITT code: g (X) = 1 + X
5
 + x

12
 + X

16
 

 
(Expansion of CCITT: "Commitè Consultaitif International Tèlèphonique etTèlègraphique" a 

Geneva-based organization made up of telephone companies from all over the world) 

 

Maximum Length codes: 

 

For any integer m  3, the maximum length codes exist with parameters: 
 

Block length : n = 2
m

 - 1 
Message bits : k = m 

Minimum distance : dmin = 2
m-1

 



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 185 

 

  
 

 

Maximum length codes are generated by polynomials of the form g( X )  
1

 


 
X

 
n
 

p( X )  
Maximum length codes are generated by polynomials of degree 'm'. Notice that any cyclic code 

generated by a primitive polynomial is a Hamming code of dmin = 3. It follows then that the 
maximum length codes are the 'duals' of Hamming codes. These codes are also referred to as 'pseudo 
Noise (PN) codes' or "simplex codes". 

 

Majority Logic Decodable Codes: 

 
These codes form a smaller sub-class of cyclic codes than do the BCH codes. Their error 

correcting capabilities, for most interesting values code length and efficiency, are much inferior to 
BCH codes. The main advantage is that the decoding can be performed using simple circuits. The 

concepts are illustrated here with two examples. 
 

Consider a (7, 3) simplex code, which is dual to the (7, 4) Hamming code. Here dmin=4 and t = 1. 
This code is generated by G and corresponding parity check matrix H given below: 

 

 
1   0   1   1   1   0   0 

1 0 0 0 1 1 0 
 

  1 0 0 0 1 1   

G  
 

1   1   1  0   0   1   0 
 0 

 

 

  

H        
 

    0 1 0 1 1 1  
 

   

1 
 0 

 

 

 0   1   1   1   0   0 
 

 
0 0 1 1 0 1 

 

    0 
 

 

            
  

The error vector e= (e0, e1, e2, e3, e4, e5, e6) is checked by forming the syndromes: 
 

s0 = e0 + e4 + e5; s2 = e2 + e4 + e5 + e6; 
 

s1 = e1 + e5 + e6; s3 = e3 + e4 + e6 

 
Forming the parity check sum as: 
 

A1 = s1 = e1 + e5 + e6 
 

A2 = s3 = e3 + e4 + e6 
 

A3 = s0 + s2 = e0 + e2 + e6 
 

It is observed that all the check sums check for the error bit e6 and no other bit is checked by 

more than one check sum. Then a majority decision can be taken that e6 = 1 if two or more Ai's are 

non-zero. If e6 = 0 and any other bit is in error then only one of the Ai's will be non-zero. It is said that 

the check sums Ai's are orthogonal on the error bit e6. A circulating SR memory circuit along with a 
few logic circuits shown in Fig 7.16 forms the hardware of the decoder. 
 

Initially, the received code vector R(X) is loaded into the SR's and check sums A1, A2 and A3 

are formed in the circuit. If e6 is in error then the majority logic output is '1 'and is corrected as it is 

shifted out of the buffer. If e6 is correct, then e5 is checked after one shift of the SR content. 
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Thus all the bits are checked by successive shifts and the corrected V(X) is reloaded in the buffer. It is 

possible to correct single errors only by using two of the check sums. However, by using three check 

sums, the decoder also corrects some double error patterns. The decoder will correct all single errors 

and detect all double error patterns if the decision is made on the basis of 
 

(i). A1 = 1, A2 = 1, A3 = 1 for single errors (ii). 

One or more checks fail for double errors. 

 
We have devised the majority logic decoder assuming it is a Block code. However we should 

not forget that it is also a cyclic code with a generator polynomial 
 

g(X) = 1 + X
2
 + X

3
 + X

4
. 

 
Then one could generate the syndromes at the decoder by using a divider circuit as already 

discussed. An alternative format for the decoder is shown in Fig 7.17. Successive bits are checked for 
single error in the block. The feed back shown is optional - The feed back will be needed if it is 

desired to correct some double error patterns. 
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Let us consider another example – This time the ( 7, 4) Hamming code generated by the 

polynomial g(X) =1 + X + X
3
. 

 1 0 0 1 0 1 1 
 

Its parity check matrix is: H   1 0 1 1 1 0   

0 
 

 

        
 

  0 1 0 1 1 1  
 

 0 
 

 

        
 

The Syndromes are seen to be 
 

s0 = e0 + e3 + (e5 + e6) 

s1 = e1 + e3 + e4 + e5 

s2 = e2 + e4 + (e5 + e6) = e2 + e5 + (e4 + e6) 
 

Check sum A1 = (s0 + s1) = e0 + e1 + (e4 + e6) 
 

It is seen that s0 and s2 are orthogonal on B1 = (e5 + e6), as both of them provide check for this 

sum. Similarly, A1 and s2 are orthogonal on B2 = (e4 + e6). Further B1 and B2 are orthogonal on 

e6. Therefore it is clear that a two-step majority vote will locate the error on e6.The corresponding 

decoder is shown in Fig 7.18, where the second level majority logic circuit gives the correction signal 

and the stored R(X) is corrected as the bits are read out from the buffer. Correct decoding is achieved 

if t < d / 2 = 1 error (d = no. of steps of majority vote). The circuit provides majority vote '1' when 

the syndrome state is {1 0 1}. The basic principles of both types of decoders, however, are the same. 

Detailed discussions on the general principles of Majority logic decoding may be found in Shu-Lin 

and Costello Jr., J.Das etal and other standard books on error control coding. The idea of this section 

was "only to introduce the reader to the concept of majority logic decoding. 

 

The Hamming codes (2
m

-1, 2
m

-m-1), m any integer, are majority logic decodable, (l5, 7) 

BCH code with t  2 is 1-step majority logic decodable. Reed-Muller codes, maximum length 
(simplex) codes Difference set codes and a sub-class of convolutional codes are examples majority 
logic decodable codes. 
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Shortened cyclic codes: 

 
The generator polynomials for the cyclic codes, in general, are determined from among the 

divisors of X
n

+ 1. Since for a given n and k, there are relatively few divisors, there are usually very 

few cyclic codes of a given length. To overcome this difficulty and to increase the number of pairs (n, 

k) for which useful codes can be constructed, cyclic codes are often used in shortened form. In this 
form the last ‘ j’ information digits are always taken to be zeros and these are not transmitted. The 
decoder for the original cyclic code can decode the shortened cyclic codes simply by padding the 
received (n-j) tuples with 'j’ zeros. Hence, we can always construct an ( n-j, k-j) shortened cyclic code 
starting from a (n, k) cyclic code. Therefore the code thus devised is a sub-set of the cyclic code from 
which it was derived - which means its minimum distance and error correction capability is at least as 
great as that of the original code. The encoding operation, syndrome calculation and error correction 
procedures for shortened codes are identical to those described for cyclic codes. This implies-
shortened cyclic codes inherit nearly all of the implementation advantages and much of the 
mathematical structure of cyclic codes. 
 

 

Golay codes: 

 

Golay code is a (23, 12) perfect binary code that is capable of correcting any combination of 

three or fewer random errors in a block of 23 bits. It is a perfect code because it satisfies the 

Hamming bound with the equality sign for t = 3 as: 

 

 23  23  23  23 
12  2

23
         2 
 

          
 

 0  1  2  
3

   
 

The code has been used in many practical systems. The generator polynomial for the code is 

obtained from the relation (X
23

+1) = (X+ 1) g1(X) g2(X), where: 
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g1(X) = 1 + X
2
 + X

4
 + X

5
 + X

6
 + X

10
 + X

11
 and g2 (X) = 1 + X + X

5
 + X

6
 + X

7
 + X

9
 + X

11
 

 

The encoder can be implemented using shift registers using either g1 (X) or g2 (X) as the divider 

polynomial. The code has a minimum distance, dmin =7. The extended Golay code, a (924, 12) code 

has dmin =8. Besides the binary Golay code, there is also a perfect ternary (11, 6) Golay code with 

dmin = 5. 
 

Reed-Solomon Codes: 

 
The Reed-Solomon (RS) codes are an important sub class of BCH codes, where the symbols 

are from GF (q), q ≠ 2
m

 in general, but usually taken as 2
m

. The encoder for an RS code differs from 
a binary encoder in that it operates on multiple bits rather than individual bits. A‘ t’-error correcting 
RS code has the following parameters. 

 

Block length: n = (q - 1) symbols 

 

Number of parity Check symbols: r = (n - k) = 2t 

 

Minimum distance: dmin = (2t + 1) 
The encoder for an RS (n, k) code on m-bit symbols groups the incoming binary data stream into 
blocks, each km bits long. Each block is treated as k symbols, with each symbol having m-bits. The 
encoding algorithm expands a block of k symbols by adding (n - k) redundant symbols. When m is an 
integer power of 2, the m - bit symbols are called 'Bytes'. A popular value of m is 8 and 8-bit RS codes 

are extremely powerful. Notice that no (n, k) linear block code can have dmin > (n - k + 1). For the RS 
code the block length is one less than the size of a code symbol and minimum distance is one greater 

than the number of parity symbols - "The dmin is always equal to the design distance of the code". An 

(n, k) linear block code for which dmin = (n-k-l) is called 'Maximum - distance separable' code. 
Accordingly, every RS code is ‘ maximum - distance separable' code-They make highly efficient use of 
redundancy and can be adjusted to accommodate wide range of message sizes. They provide wide range of 
code rates (k / n) that can be chosen to optimize performance. Further, efficient decoding techniques are 
available for use with RS codes (usually similar to those of BCH codes).  

Reed-Muller Codes (RM codes) are a class of binary group codes, which are majority logic 

decodable and have a wide range of rates and minimum distances. They are generated from the 

Hadamard matrices. (Refer J. Das etal). 

 
CODING FOR BURST ERROR CORRECTION 

 

The coding and decoding schemes discussed so far are designed to combat random or independent 

errors. We have assumed, in other words, the channel to be “Memory less”. However, practical 

channels have ‘memory’ and hence exhibit mutually d ependent signal transmission impairments. In a 

‘fading channel’, such impairment is felt, particul arly when the fading varies slowly compared to one 

symbol duration. The ‘multi-path’ impairment involv es signal arrivals at the receiver over two or 

more paths of different lengths with the effect that the signals “arrive out of phase” with each other 

and the cumulative received signal are distorted. High-Frequency (HF) and troposphere propagation 

in radio channels suffer from such a phenomenon. Further , some channels suffer from switching 

noise and other burst noise (Example: Telephone channels or channels disturbed by pulse jamming 

impulse noise in the communication channel causes transmission errors to cluster into ‘bursts’). All 

of these time-correlated impairments results in statistical dependence among successive symbol 

transmissions. The disturbances tend to cause errors that occur in bursts rather than isolated events. 
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Once the channel is assumed to have memory, the errors that occur can no longer be 

characterized as single randomly distributed errors whose occurrence is independent from bit to bit. 

Majority of the codes: Block, Cyclic or Convolutional codes are designed to combat such random or 

independent errors. They are, in general, not efficient for correcting burst errors. The channel 

memory causes degradation in the error performance. 

 

Many coding schemes have been proposed for channels with memory. Greatest problem faced 

is the difficulty in obtaining accurate models of the frequently time-varying statistics of such 

channels. We shall briefly discuss some of the basic ideas regarding such codes. (A detailed 

discussion of burst error correcting codes is beyond the scope of this book). We start with the 

definition of burst length, ‘ b’ and requirements on a ( n, k) code to correct error burst. “An error 

burst of length ‘ b’ is defined as a sequence of error symbols confined to ‘ b’ consecutive bit positions 

in which the first and the last bits are non-zero” 

 

For example, an error vector (00101011001100) is a burst of b = 10. The error vector 

(001000110100) is a burst of b = 8. A code that is capable of correcting all burst errors of length ‘ b’ 

or less is called a “ b-burst-error-correcting code”. Or the code is said to have a burst error correcting 

capability = b. Usually for proper decoding, the b-symbol bursts are separated by a guard space of ‘ g’ 

symbols. Let us confine, for the present, ourselves for the construction of an (n, k) code for a given n and 

b with as small a redundancy (n - k) as possible. Then one can make the following observations. 
 

 

Start with a code vector V with an error burst of length 2b or less. This code vector then may 

be expressed as a linear combination (vector sum) of the vectors V1 and V2 of length b or less. 

Therefore in the standard array of the code both V1 and V2 must be in the same co-set. Further, if one 

of these is assumed to be the co-set leader (i.e. a correctable error pattern), then the other vector 

which is in the same co-set turns out to be an un-correctable error pattern. Hence, this code will not 

be able to correct all error bursts of length b or less. Thus we have established the following assertion: 

 

Assertion-1: “A necessary condition for a (n ,k) linear code to b e able to correct all error bursts of 

length b or less is that no error burst of length 2b or less be a code vector”.  
Next let us investigate the structure of code vectors whose non zero components are confined 

to the first ‘ b’ bits. There are, clearly, 2
b
 such code vectors. No two such vectors can be in the same 

co-set of the standard array; otherwise their sum, which is again a burst of b or less, would be a code 

vector. Therefore these 2
b
 vectors must be in 2

b
 distinct co-sets. For an (n, k) code we know that 

there are 2
(n-k)

 co-sets. This means that (n-k) must be at least equal to ‘ b’. Thus we have established 
another important assertion. 

 

Assertion-2:“The number of parity check bits of an (n, k) linear code that has no bursts of length 

b or less as a code vector is at least ‘b’, i.e. (n -k) ≥ b 

 

Combining the two assertions, now we can conclude that: “The number of parity check 

bits of a b-burst error correcting code must be at least 2b” 
 

i. e.  (n- k) ≥ 2b …………………………………. (9.1) 

 

From Eq. (9.1) it follows that the burst-error-correcting capability of an (n, k) code is at most (n-k)//2. 

That is, the upper bound on the burst-error-correcting capability of an (n, k) linear code is governed by: 
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b ≥ (n-k)/2 …………………………………. (9.2) 

 

This bound is known by the name “ Reiger Bound” and it is used to define the burst correcting 
efficiency, z, of an (n, k) codes as 
 

z = 2b/ (n-k) ………………………………….. (9.3) 

 
Whereas most useful random error correcting codes have been devised using analytical techniques, 

for the reasons mentioned at the beginning of this section, the best burst- error correcting codes have 
to be found through computer aided search procedures. A short list of high rate burst-error- correcting 

cyclic codes found by computer search is listed in Table-9.1. 

 
If the code is needed for ‘detecting’ error bursts of length‘ b’, then the number of check bits must 

satisfy: 
(n - k) ≥ b ………………………………………… (9.4) 

 
Some of the famous block/cyclic and convolution codes designed for correcting burst errors are 
Burton, Fire, R-S, Berlekemp - Preparata-Massey , Iwadare and Adaptive Gallager codes. Of these 

Fire codes have been extensively used in practice. A detailed discussion on these codes is available in 
Shu-Lin et-all and J.Das et-all. (Refer – Bibliogr aphy) 

 

Burst and Random Error Correcting Codes: 

 

In most practical systems, error occurs neither independently, at random, nor in well-defined 

bursts. As a consequence codes designed for random error correction or single-burst-error correction 

will become either inefficient or in adequate for tackling a mixture of random and burst errors. For 

channels in which both types of error occur, it is better to design codes that can correct both types of 

errors. One technique, which only requires knowledge of the duration or span of channel memory, not 

its exact statistical characterization, is the use of “ Time diversity or Interleaving”.  
Interleaving the code vectors before transmission and de-interleaving after reception causes 

the burst errors to be spread out in time and the decoder can handle them as if they were random 

errors. Since, in all practical cases, the channel memory decreases with time separation, the idea 

behind interleaving is only to separate the code word symbols in time. The interleaving times are 

similarly filled by symbols of other code words. “ Separating the symbols in time effectively transforms 

a channel with memory to a ‘memory less’ channel ”, and there by enable the random error correcting 

codes to be useful in a bursty-noise channel. 

 

The function of an interleaver is to shuffle the code symbol over a span of several block 

lengths (for block codes) or several constraint lengths (for convolutional codes). The span needed is 

usually determined from the knowledge of the burst length. Further the details of the bit-

redistribution pattern must be known at the receiver end to facilitate de-interleaving and decoding. 

Fig 9.1 illustrates the concept of interleaving. 

 

The un-interleaved code words shown in Fig 9.1(a) are assumed to have a single error correcting 

capability with in each six-symbol sequence. If the memory span of the channel is one code word in 

duration, a six symbol time noise burst could destroy the information contained in one or two code 

words. On the contrary, suppose encoded data were interleaved as shown in Fig 9.1(b), such that each 

code symbol of each code word is separated from its pre-interleaved neighbors by a span of six 

symbol times. The result of an error burst as marked in Fig.9.1 is to affect one code symbol from each 

of the original six code words. Upon reception, the stream is de-interleaved and decoded as 
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though a single-random error has occurred in each code word. Clearly the burst noise has no de-
grading effect on the final sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block Interleaving: 

 

Given an (n, k) cyclic code, it is possible to construct a (λn, λk) cyclic “ interlaced code” by 

simply arranging λ code vectors of the original code into λ rows of a rectangular array and then 

transmitting them column by column. The parameter ‘ λ’ is called “ Degree of interlacing”. By such 

an arrangement, a burst of length λ or less will affect no more than one symbol in each row since 

transmission is done on a column by column basis. If the original code (whose code words are the 

rows of the (λn λk) matrix) can correct single errors, then the interlaced code can correct single 

bursts of length λ or less. On the other hand if the original code has an error correcting capability of‘’ 

t’, t >1, then the interlaced code is capable of correcting any combination of t-error bursts of length λ 

or less. The performance of the (λn, λk) interleaved cyclic code against purely random errors is 

identical to that of the original (n, k) cyclic code from which it was generated. 

 

The block interleaver accepts the coded symbols in blocks from the encoder, permutes the 

symbols and then feeds the re-arranged symbols to the modulator. The usual permutation of block is 

accomplished by ‘filling the rows’ of a ‘ λ’ row by ‘ n’- column ‘array’ with the encoded sequence. 

After the array is completely filled, the symbols are then fed to the modulator ‘ one column at a time’ 

and transmitted over the channel. At the receiver the code words are re-assembled in a complimentary 

manner. The de-inter leaver accepts the symbols from the de-modulator, de-interleaves them and 

feeds them to the decoder - symbols are entered into the de interleaver array by columns and removed 

by rows. The most important characteristics of block interleaver may be summarized as follows: 
 

 

1) Any burst of length less than λ contiguous channel symbol errors result in isolated errors at  

the de-interleaver output that are separated from each other by at least  n-symbols. 

 

2) Any q.λ burst of errors, where q >1, results in output bursts from the de-interleaver of not more 

than q – symbol errors. Each output burst is separated fr om the other burst by not less than n- 

q symbols. The notation q means the smallest integer not less than q and q means the largest 

integer not greater than q. 
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3) A periodic sequence of single errors spaced λ- symbols apart results in a single burst of errors of 
length ‘ n’ at the de-interleaver output. 

 
4) The interleaver/ de-interleaver end – to –end delay is approximately 2λn symbol time units to be 

filled at the receiver before decoding begins. Therefore, the minimum end- to- end delay is 

(2λn-2n+2) symbol time units. This does not include any channel propagation delay. 

 

5) The memory requirement, clearly, is λn symbols for each location (interleaver and de-

interleaver). However, since the λn array needs to be (mostly) filled before it can be read out, 

a memory of 2λn symbols is generally implemented at each location to allow the emptying of 

one λn array while the other is being filled , and vice versa. 

 
Finally a note about the simplest possible implementation aspect- If the original code is cyclic 

then the interleaved code is also cyclic. If the original code has a generator polynomial g(X), the 

interleaved code will have the generator polynomial g (X 
λ
). Hence encoding and decoding can be 

done using shift registers as was done for cyclic codes. The modification at the decoder for the 
interleaved codes is done by replacing each shift register stage of the original decoder by λ – stages 
without changing other connections. This modification now allows the decoder to look at successive 
rows of the code array on successive decoder cycles. It then follows that if the decoder for the 
original cyclic code is simple so will it be for the interleaved code. “Interleaving technique is inde ed 
an effective tool for deriving long powerful codes from short optimal codes”. 

 

Example 9.1: 

 

Let us consider an interleaver with n = 4 and λ =6. The corresponding (64) array is shown in Fig. 

9.2(a). The symbols are numbered indicating the sequence of transmission. In Fig 9.2(b) is shown an 

error burst of five-symbol time units-The symbols shown encircled suffer transmission errors. After 

de- interleaving at the receiver, the sequence is: 
 
 
 
 
 
 
 
 

 

Observe that in the de-interleaved sequence, each code word does not have more than one error. The 
smallest separation between symbols in error is n = 4. 

 
Next, with q = 1.5, qλ= 9. Fig 9.2(c) illustrates an example of 9-symbol error burst. After de-

interleaving at the receiver, the sequence is: 
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The encircled symbols are in error. It is seen that the bursts consists of no more than 1.5 =2 

contiguous symbols per code word and they are separated by at least n - 1.5 = 4 – 1 = 3 symbols. 

Fig.9.2 (d) illustrates a sequence of single errors spaced by λ = 6 symbols apart. After de-interleaving 

at the receiver, the sequence is: 
 
 
 
 
 
 
 
 
It is seen that de-interleaved sequence has a single error burst of length n = 4 symbols. The minimum 

end –to –end delay due to interleaver and de-interl eaver is (2λn – 2n+2 ) = 42 symbol time units. 

Storage of λn = 24 symbols required at each end of the channel. As said earlier, storage for 2λn = 48 

symbols would generally be implemented. 

 

Example 9.2: Interleaver for a BCH code. 
 

Consider  a  (15,  7)  BCH  code  generated  by  g(X)  =  1+X+X
2
+X

4
+X

8
.  For  this  code  dmin=5, 

t = 
dmim

 


 
1

  2 .With λ =5, we can construct a (75, 35) interleaved code with a burst error correcting 
2  

capability of b= λt=10. The arrangement of code words, similar to Example 9.1, is shown in Fig 9.3. 

A 35-bit message block is divided into five 7-bit message blocks and five code words of length 15 are 

generated using g(X).These code words are arranged as 5-rows of a 515 matrix. The columns of the 

matrix are transmitted in the sequence shown as a 75-bit long code vector. 
 

 Each   rows   is  15   bit  code   word    
 

           

 1 6 11 …. 31 (36) ….. (66) 71  

 2 7 12 …. (32) (37) ….. 67 72  

 3 8 13 …. (33) (38) ….. 68 73  
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 4 (9) 14 …. (34) 39 ….. 69 74  

 5 10 15 …. (35) 40 …… (70) 75  
           

Fig 9.3 Block Interleaver for a (15, 7) BCH code. 

 
To illustrate the burst and random error correcting capabilities of this code, we have put the bit 

positions 9, 32 to 38, 66 and 70 in parenthesis, indicating errors occurred in these positions .The de-

interleaver now feeds the rows of Fig 9.3 to the decoder. Clearly each row has a maximum of two 

errors and since the (15, 7) BCH code, from which the rows were constructed, is capable of correcting 

up to two errors per row. Hence the error pattern shown in parenthesis in the Figure can be corrected. 

The isolated errors in bit positions 9, 66 and 70 may be thought of as random errors while the cluster 

of errors in bit positions 32 to 38 as a burst error. 

 

Convolutional Interleaving: 

 

Convolution interleavers are somewhat simpler and more effective compared to block 

interleavers. A (b  n) periodic (convolutional) interleaver is shown in Fig 9.4.The code symbols are 

shifted sequentially into the bank of n-shift registers. Each successive register introduces a delay ‘ b’. 

i.e., the successive symbols of a codeword are delayed by {0, b, 2b … ( n-1) b} symbol units 

respectively. Because of this, the symbols of one codeword are placed at distances of b-symbol units 

in the channel stream and a burst of length ‘ b’ separated by a guard space of ( n-1)b symbol units 

only affect one symbol per codeword. In the receiver, the code words are reassembled through 

complementary delay units and decoded to correct single errors so generated. If the burst length l > b 

but l ≤ 2b, then the (n, k) code should be capable of correcting two errors per code words. To 

economize on the number of SR’s as shown in Fig 9.4 and clock them at a period of nTo, where To = 

symbol duration. This would then ensure the required delays of {b, 2b… ( n-1) b} symbol units. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As illustrated in Example 9.2, if one uses a (15, 7) BCH code with t=2, then a burst of length ≤ 2b can 

be corrected with a guard space of (n-1) b = 14b. This 14 – to – 2 –guard space to burst length ratio is 

too large, and hence codes with smaller values of n are preferable. Convolutional codes with 

interleaver may also be used. The important advantage of convolutional interleaver over block 

interleaver is that, with convolutional interleaving the end-to-end delay is (n-1) b symbol units and 

the memory required at both ends of the channel is b (n-1)/2. This means, there is a reduction of one 

half in delay and memory over the block interleaving requirements. 
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Review Questions: 
 
1. What are RS codes? How are they formed?  

2. Write down the parameters of RS codes and explain those parameters with an example.  

3. List the applications of RS codes.  

4. Explain why golay code is called as perfect code.  

5. Explain the concept of shortened cyclic code.  

6. What are burst error controlling codes?  

7. Explain clearly the interlacing technique with a suitable example.  

8. What are Cyclic Redundancy Check (CRC) codes  
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UNIT – 8:  CONVOLUTIONAL CODES 
 

 

Syllabus: 
Convolution Codes, Time domain approach. Transform domain approach. 7 Hours 
 
 
 
 

 

Text Books:  
Digital and analog communication systems, K. Sam Shanmugam, John Wiley, 
1996. Digital communication, Simon Haykin, John Wiley, 2003. 
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ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007  
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Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 198 

 

  
 
 

 

Unit 8 

 

CONVOLUTIONAL CODES 

In block codes, a block of n-digits generated by the encoder depends only on the block of k-

data digits in a particular time unit. These codes can be generated by combinatorial logic circuits. In a 

convolutional code the block of n-digits generated by the encoder in a time unit depends on not only 

on the block of k-data digits with in that time unit, but also on the preceding ‘ m’ input blocks. An ( n, 
k, m) convolutional code can be implemented with k-input, n-output sequential circuit with input memory 

m. Generally, k and n are small integers with k < n but the memory order m must be made large to 

achieve low error probabilities. In the important special case when k = 1, the information sequence is not 

divided into blocks but can be processed continuously. 

 

Similar to block codes, convolutional codes can be designed to either detect or correct errors. 
However, since the data are usually re-transmitted in blocks, block codes are better suited for error 

detection and convolutional codes are mainly used for error correction. 

 
Convolutional codes were first introduced by Elias in 1955 as an alternative to block codes. 

This was followed later by Wozen Craft, Massey, Fano, Viterbi, Omura and others. A detailed 

discussion and survey of the application of convolutional codes to practical communication channels 
can be found in Shu-Lin & Costello Jr., J. Das etal and other standard books on error control coding. 

 

To facilitate easy understanding we follow the popular methods of representing convolutional 
encoders starting with a connection pictorial - needed for all descriptions followed by connection 

vectors. 

 

8.1 Connection Pictorial Representation:  

 

The encoder for a (rate 1/2, K = 3) or (2, 1, 2) convolutional code is shown in Fig.8.1. Both 

sketches shown are one and the same. While in Fig.8.1 (a) we have shown a 3-bit register, by noting 

that the content of the third stage is simply the output of the second stage, the circuit is modified 

using only two shift register stages. This modification, then, clearly tells us that" the memory 

requirement m = 2. For every bit inputted the encoder produces two bits at its output. Thus the 

encoder is labeled (n, k, m) (2, 1, 2) encoder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

At each input bit time one bit is shifted into the left most stage and the bits that were present in the 
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registers shifted to the right by one position. Output switch (commutator /MUX) samples the output 

of each X-OR gate and forms the code symbol pairs for the bits introduced. The final code is obtained 

after flushing the encoder with "m" zero's where 'm'- is the memory order (In Fig.8.1, m = 2). The 

sequence of operations performed by the encoder of Fig.8.1 for an input sequence u = (101) are 

illustrated diagrammatically in Fig 8.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From Fig 8.2, the encoding procedure can be understood clearly. Initially the registers are in 

Re-set mode i.e. (0, 0). At the first time unit the input bit is 1. This bit enters the first register and 

pushes out its previous content namely ‘ 0’ as shown, which will now enter the second register and 

pushes out its previous content. All these bits as indicated are passed on to the X-OR gates and the 

output pair (1, 1) is obtained. The same steps are repeated until time unit 4, where zeros are 

introduced to clear the register contents producing two more output pairs. At time unit 6, if an 

additional ‘ 0’ is introduced the encoder is re-set and the output pair (0, 0) obtained. However, this 

step is not absolutely necessary as the next bit, whatever it is, will flush out the content of the second 

register. The ‘ 0’ and the ‘ 1’ indicated at the output of second register at time unit 5 now vanishes. 

Hence after (L+m) = 3 + 2 = 5 time units, the output sequence will read v = (11, 10, 00, 10, 11). (Note: 

L = length of the input sequence). This then is the code word produced by the encoder. It is very 

important to remember that “ Left most symbols represent earliest transmission”. 

 

As already mentioned the convolutional codes are intended for the purpose of error correction. 

However, it suffers from the ‘ problem of choosing connections’ to yield good distance properties. The 

selection of connections indeed is very complicated and has not been solved yet. Still, good codes 

have been developed by computer search techniques for all constraint lengths less than 20. Another 

point to be noted is that the convolutional codes do not have any particular block size. They can be 

periodically truncated. Only thing is that they require m-zeros to be appended to the end of the input 

sequence for the purpose of ‘ clearing’ or ‘ flushing’ or ‘ re-setting’ of the encoding 
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shift registers off the data bits. These added zeros carry no information but have the effect of reducing 

the code rate below (k/n). To keep the code rate close to (k/n), the truncation period is generally made 

as long as practical. 

 
The encoding procedure as depicted pictorially in Fig 8.2 is rather tedious. We can approach 

the encoder in terms of “Impulse response” or “gene rator sequence” which merely represents the 
response of the encoder to a single ‘ 1’ bit that moves through it. 

 

8.2 Convolutional Encoding – Time domain approach: 

 

The encoder for a (2, 1, 3) code is shown in Fig. 8.3. Here the encoder consists of m=3 stage 

shift register, n=2 modulo-2 adders (X-OR gates) and a multiplexer for serializing the encoder 

outputs. Notice that module-2 addition is a linear operation and it follows that all convolution 

encoders can be implemented using a “ linear feed forward shift register circuit”. 
 

The “information sequence’ u = (u1, u2, u3 …….) enters the encoder one bit at a time starting from 

u1. As the name implies, a convolutional encoder operates by performing convolutions on the  
information sequence. Specifically, the encoder output sequences, in this case v

(1)
 = {v1

(1)
, v2

(1)
, v3

(1)
 … 

}and v
(2)

 = {v1
(2)

,v2
(2)

,v3
(2)

 … } are obtained by the discrete convolution of the information sequence  
with the encoder "impulse responses'. The impulse responses are obtained by determining the output 
sequences of the encoder produced by the input sequence u = (1, 0, 0, 0…) .The impulse responses so 
defined are called 'generator sequences' of the code. Since the encoder has a m-time unit memory the 
impulse responses can last at most (m+ 1) time units (That is a total of (m+ 1) shifts are necessary for 
a message bit to enter the shift register and finally come out) and are written as: 
 

g 
(i)

 = {g1
(i)

, g2
(i)

,g3
(i)

 …g  m+1
(i)

}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the encoder of Fig.8.3, we require the two impulse responses, 
 

g 
(1)

 = {g1
(1)

, g2
(1)

, g3 
(1)

, g4 
(1)

} and 

g 
(2)

 = {g1
(2)

, g2
(2)

, g3 
(2)

, g4 
(2)

} 

By inspection, these can be written as: g 
(1)

 = {1, 0, 1, 1} and g 
(2)

 = {1, 1, 1, 1} 
 
Observe that the generator sequences represented here is simply the 'connection vectors' of the 

encoder. In the sequences a '1' indicates a connection and a '0' indicates no connection to the 
corresponding X - OR gate. If we group the elements of the generator sequences so found in to pairs, 
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we get the overall impulse response of the encoder, Thus for the encoder of Fig 8.3, the ‘over-all 
impulse response’ will be: 

 

v = (11, 01, 11, 11) 
 
The encoder outputs are defined by the convolution sums: 

v (1) = u * g (1) …………………. (8.1 a) 

v (2) = u * g (2) …………………. (8.1 b) 
 
Where * denotes the ‘discrete convolution’, which i mplies: 

 
m      

 

vl 
(
 
j
 
)
   ∑ul i .gi 1 

(
 
j
 
)
     

 

i 0 
(j)

 + ul – 1  g2 
(j)

 + ul – 2  g3 
(j)

 + ….. +u  l – m  gm+1 (j)    ………………. 

 
 

= ul g1 (8.2) 
 

 

for j = 1, 2 and where ul-i = 0 for all l < i and all operations are modulo - 2. Hence for the encoder of 

Fig 8.3, we have: 
 

vl
(1)

 = ul + ul – 2  + ul - 3 
 

vl
(2)

 = ul + ul – 1 + ul – 2  + ul - 3 

 
This can be easily verified by direct inspection of the encoding circuit. After encoding, the 

two output sequences are multiplexed into a single sequence, called the "code word" for transmission 
over the channel. The code word is given by: 
 

v = {v1 
(1)

 v1 
(2)

, v2 
(1)

 v2 
(2)

, v3 
(1)

 v3 
(2)

 …} 

 
Example 8.1: 
 
Suppose the information sequence be u = (10111). Then the output sequences are: 
 

v 
(1)

 = (1 0 1 1 1) * (10 1 1) 
= (1 0 0 0 0 0 0 1),  

 

v 
(2)

 = (1 0 1 1 1) * (1 1 1)  
= (1 1 0 1 1 1 0 1),  

 
and the code word is 

 

v = (11, 01, 00, 01, 01, 01, 00, 11) 

 
The discrete convolution operation described in Eq (8.2) is merely the addition of shifted 

impulses. Thus to obtain the encoder output we need only to shift the overall impulse response by 
'one branch word', multiply by the corresponding input sequence and then add them. This is illustrated in 

the table below: 
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INPUT OUT PUT 
 

1 1 1 0 1 1 1 1 1     

0  0 0 0 0 0 0 0 0 -----one branch word shifted sequence 
       

1   1 1 0 1  1 1 1 1  ---Two branch word shifted 

1    1 1 0 1 1 1 1 1  

1     1 1 0 1 1 1 1 1 

Modulo -2 sum 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 

 

The Modulo-2 sum represents the same sequence as obtained before. There is no confusion at all 

with respect to indices and suffices! Very easy approach - super position or linear addition of shifted 

impulse response - demonstrates that the convolutional codes are linear codes just as the block codes 

and cyclic codes. This approach then permits us to define a 'Generator matrix' for the convolutional 

encoder. Remember, that interlacing of the generator sequences gives the overall impulse response 

and hence they are used as the rows of the matrix. The number of rows equals the number of 

information digits. Therefore the matrix that results would be “ Semi-Infinite”. The second and 

subsequent rows of the matrix are merely the shifted versions of the first row -They are each shifted 

with respect to each other by "One branch word". If the information sequence u has a finite length, 

say L, then G has L rows and n  (m +L) columns (or (m +L) branch word columns) and v has a length 

of n  (m +L) or a length of (m +L) branch words. Each branch word is of length 'n'. Thus the 

Generator matrix G, for the encoders of type shown in Fig 8.3 is written as: 

 

 g1
( 1 )

 g1
( 2 )

 g2
( 1 )

 g2
( 2 )

 g3
( 1 )

 g3
( 2 )

 g4
( 1 )

 g4
( 2 )

 
 

  

g1
( 1 )

 g1
( 2 )

 g2
( 1 )

 g2
( 2 )

 g3
( 1 )

 g3
( 2 )

 
 

G   
 

   ( 1 ) ( 2 ) ( 1 ) ( 2 ) 
 

   g1 g1 g2 g2 
 

(Blank places are zeros.) 
 
The encoding equations in Matrix form is: 

 

v = u .G …………………. 
 
Example 8.2: 

 
 

  L   L   
 

     L   

g 
 

( 1 ) g ( 2 ) 
 

L 
  

 

4   L ……..  (8.3) 
 

   4       

g  ( 1 ) g ( 2 ) g ( 1 ) g ( 2 )  
 

3 
 

3 4 4 
L  

 

      
 

 
 
 
 
 

(8.4) 

 
For the information sequence of Example 8.1, the G matrix has 5 rows and 2(3 +5) =16 columns and 
we have  

 1 1 0 1 1 1 1 1 0 0 0 0 0 0  0 0 
 

  0  1 1 0 1 1 1 1 1 0 0 0 0  0 0   

 0   

 

 

G  
                  

 

  0 0 1   1   0   1   1   1   1   1   0 0 0 0  
 

0   0   

  
0 

 
0 0 0 0 1 1 0 1 1 1 1 1 0 0 

 
 

 0  
 

 

                   
 

  0  0 0 0 0 0 0 1 1 0 1 1 1 1   1   

 0  

 

 

                   
 

 
Performing multiplication, v = u G as per Eq (8.4), we get: v = (11, 01, 00, 01, 01, 00, 11) same as 

before. 

 
As a second example of a convolutional encoder, consider the (3, 2, 1) encoder shown in 
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Fig.8.4. Here, as k =2, the encoder consists of two m = 1 stage shift registers together with n = 3 

modulo -2 adders and two multiplexers. The information sequence enters the encoder k = 2 bits at a 

time and can be written as u = {u1 (1) u1 
(2)

, u2 (1) u2 
(2)

, u3 (1) u3 (2) … } or as two separate input 
sequences:              

u 
(1)

 = {u1 
(1)

, u2 
(1)

, u3 (1) … } and  u 
(2)

 = {u1 
(2)

, u2 
(2)

, u3 (2) … }. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are three generator sequences corresponding to each input sequence. Letting 

gi  
( j)

 = {gi,1  
( j)

, gi,2  
( j)

, gi,3  
( j)

  … g  i,m+1  
( j)

} 
 
input i and output j. The generator sequences for the encoder are: 
 

g1 
(1)

 = (1, 1), g1 
(2)

 = (1, 0), g1 
(3)

 = (1, 0) 
 

g2 
(1)

 = (0, 1), g2 
(2)

 = (1, 1), g2 
(3)

 = (0, 0) 

 
The encoding equations can be written as: 

v (1) = u (1) * g1 (1) + u 
(2)

* g2 (1) 

v (2) = u 
(1)

 * g1 (2) + u (2) * g2 (2) 

v (3) = u (1) * g1 (3) + u (2) * g2 (3) 

 
 
 
 
 

……………………. (8 .5 a) 

…………………….  (8.5 b) 

……………………  (8.5 c) 

 
The convolution operation implies that: 
 

v l 
(1)

 = u l 
(1)

 + u l-1 
(1)

 + u l-1 
(2)

 
 

v l 
(2)

 = u l 
(1)

 + u l 
(2)

 + u l-1 

(2)
 v l 

(3)
 = u l 

(1)
 

 
as can be seen from the encoding circuit. 
After multiplexing, the code word is given by: 
 

v  = { v 1 
( 1)

 v 1 
( 2)

 v 1 
( 3)

 , v 2 
( 1)

 v 2 
( 2)

 v 2 
( 3)

 , v 3 
( 1)

 v 3 
( 2)

 v 3 
( 3)

  …   } 

 

Example 8.3: 

 

  

 represent the generator sequence corresponding to 
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Suppose u = (1 1 0 1 1 0). Hence u 
(1)

 = (1 0 1) and u 
(2)

 = (1 1 0).  Then 
 

v 
(1)

 = (1 0 1) * (1,1) + (1 1 0) *(0,1) = (1 0 0 1) 

v 
(2)

 = (1 0 1) * (1,0) + (1 1 0) *(1,1) = (0 0 0 0) 

 

v 
(3)

 = (1 0 1) * (1,0) + (1 1 0) *(0,0) = (1 0 1 0) 

 

 v = (1 0 1, 0 0 0, 0 0 1, 1 0 0). 
 
The generator matrix for a (3, 2, m) code can be written as: 

 
  ( 1 ) ( 2 ) ( 3 ) ( 1 ) ( 2 ) ( 3 )   

L 
 ( 1 ) ( 2 ) ( 3 )   

 

 
 

g
11 

g
11 

g
11 

g
12 

g
12 

g
13    

g
1,m1 

g
1,m1 

g
1,m1 

 
 

 

 ( 1 ) ( 2 ) ( 3 ) ( 1 ) ( 2 ) ( 3 )   

L 
 ( 1 ) ( 2 ) ( 3 )  

 

 

 

   

 

  

 
g

21 g
21 g

21 g
22 g

22 g
22    

g
2,m1 g

2,m1 g
2,m1  

 

G  
    ( 1 ) ( 2 ) ( 3 ) ( 1 )  ( 2 )  ( 3 )    

……  (8.6) 
 

  O  
g

11 
g

11 
g

11 
g

12 
g

12 
g

12 L   
 

   O  g  ( 1 )g  ( 2 )g  ( 3 ) g  ( 1 )g ( 2 )g ( 3 ) L    
 

     21 21 21 22 22 22     
 

  

O 
  

O 
   

O 
  

O 
   

             
 

 
The encoding equations in matrix form are again given by v = u G. observe that each set of k = 2 

rows of G is identical to the preceding set of rows but shifted by n = 3 places or one branch word to 

the right. 

 

Example 8.4: 
 
For the Example 8.3, we have 

u = {u1 (1) u1 
(2)

, u2 (1) u2 
(2)

, u3 (1) u3 
(2)

} = (1 1, 0 1, 1 0) 
 

The generator matrix is:              
 

   1 1 1, 1 0 0        
 

    1 0 , 1  1 0        
 

   0        

 
 

                 
 

 
G  

    1  1 1, 1 0 0     
 

     

0 
 

1 0 , 1 1 0 
    

 

            
 

           1 1 1, 1 0 0  
 

           
0 1 0 , 1 1 

  
 

           0 
 

                  
 

 
*Remember that the blank places in the matrix are all zeros.  
Performing the matrix multiplication, v = u G, we get: v = (101,000,001,100), again agreeing with 
our previous computation using discrete convolution. 

 
This second example clearly demonstrates the complexities involved, when the number of 

input sequences are increased beyond k > 1, in describing the code. In this case, although the encoder 

contains k shift registers all of them need not have the same length. If ki is the length of the i-th shift 
register, then we define the encoder "memory order, m" by 
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m  Max ki ………………. (8.7) 
1i k   

 
(i.e. the maximum length of all k-shift registers) 
 
An example of a (4, 3, 2) convolutional encoder in which the shift register lengths are 0, 1 and 2 is 

shown in Fig 8.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Since each information bit remains in the encoder up to (m + 1) time units and during each 

time unit it can affect any of the n-encoder outputs (which depends on the shift register connections) 

it follows that "the maximum number of encoder outputs that can be affected by a single information 

bit" is 
 

nA   n(m  1) …………………… (

 8.8) 
 

‘ nA’ is called the 'constraint length" of the code. For example, the constraint lengths of the encoders 
of Figures 8.3, 8.4 and 8.5 are 8, 6 and 12 respectively. Some authors have defined the constraint 
length (For example: Simon Haykin) as the number of shifts over which a single message bit can 
influence the encoder output. In an encoder with an m-stage shift register, the “ memory” of the 

encoder equals m-message bits, and the constraint length nA = (m + 1). However, we shall adopt the 
definition given in Eq (8.8). 

 
The number of shifts over which a single message bit can influence the encoder output is 

usually denoted as K. For the encoders of Fig 8.3, 8.4 and 8.5 have values of K = 4, 2 and 3 

respectively. The encoder in Fig 8.3 will be accordingly labeled as a ‘ rate 1/2, K = 4’ convolutional 
encoder. The term K also signifies the number of branch words in the encoder’s impulse response. 

 
Turning back, in the general case of an (n, k, m) code, the generator matrix can be put in the 

form: 

G1    G2 G3 L   Gm 
G

m 1      
 

 

G1 G2 
L

  

G
m 1 Gm 

G
m 1 

    
 

G    …………… (8.9) 
 

  G1 
L

  
G

m 2 
G

m 1 Gm 
G

m 1    
 

  

O O O O O 
   

 

     
 

Where each Gi is a (k  n) sub matrix with entries as below:     
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Notice that each set of k-rows of G are identical to the previous set of rows but shifted n-places to 

the right. For an information sequence u = (u1, u2…)   where ui = {ui 
(1)

, ui 
(2)

…u  i 
(k)

}, the code word is 

v = (v1, v2…)   where vj = (vj 
(1)

, vj 
(2)

 ….v  j 
(n)

) and v = u G. Since the code word is a linear combination 
of rows of the G matrix it follows that an (n, k, m) convolutional code is a linear code. 

 
Since the convolutional encoder generates n-encoded bits for each k-message bits, we define R = 

k/n as the "code rate". However, an information sequence of finite length L is encoded into a code word 

of length n (L +m), where the final nm outputs are generated after the last non zero information block 

has entered the encoder. That is, an information sequence is terminated with all zero blocks in order to 

clear the encoder memory. (To appreciate this fact, examine 'the calculations of vl 
( j )

 for the Example 8.l 

and 8.3). The terminating sequence of m-zeros is called the "Tail of the message". Viewing the 

convolutional-code as a linear block code, with generator matrix G, then the block code rate is given by 

kL/n(L +m) - the ratio of the number of message bits to the length of the code word. If L >> m, then, L/ 

(L +m) ≈ 1 and the block code rate of a convolutional code and its rate when viewed as a block code 

would appear to be same. Infact, this is the normal mode of operation for convolutional codes and 

accordingly we shall not distinguish between the rate of a convolutional code and its rate when viewed as 

a block code. On the contrary, if ‘ L’ were small, the effective rate of transmission indeed is kL/n (L + m) 

and will be below the block code rate by a fractional amount: 

 

k / n  kL / n( L  m )  m …………………….. (8.11 )  
 

L  m 
 

k / n    
 

and is called "fractional rate loss". Therefore, in order to keep the fractional rate loss at a minimum 
(near zero), ‘ L’ is always assumed to be much larger than ‘ m’. For the information 'sequence of 
Example 8.1, we have L = 5, m =3 and fractional rate loss = 3/8 = 37.5%. If L is made 1000, the 
fractional rate loss is only 3/1003≈ 0.3%. 

 

8.3 Encoding of Convolutional Codes; Transform Domain Approach: 

 
In any linear system, we know that the time domain operation involving the convolution 

integral can be replaced by the more convenient transform domain operation, involving polynomial 

multiplication. Since a convolutional encoder can be viewed as a 'linear time invariant finite state 

machine, we may simplify computation of the adder outputs by applying appropriate transformation. 

As is done in cyclic codes, each 'sequence in the encoding equations can' be replaced by a 

corresponding polynomial and the convolution operation replaced by polynomial multiplication. For 

example, for a (2, 1, m) code, the encoding equations become: 
 

  v 
(1)

(X) = u(X) g
(1)

(X) ………………..  (8.12a) 

  v
(2)

 (X) = u(X) g
(2)

(X) ………………..... (8.12 b) 

Where u(X) = u1 + u2X + u3X
2
 + … is the information polynomial,   

v
(1)

(X) = v1 
(1)

 + v2 
(1)

X + v3 
(1)

 X
2
 +....., and    
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v
(2)

(X) = v1
(2)

 + v2
(2)

X + v3
(2)

 X
2
 +..... 

 
are the encoded polynomials. 
 

g
(1)

(X) = g1
(1)

 + g2
(1)

 X + g3
(1)

 X
2
 + ....., and 

 

g
(2)

(X) = g1
(2)

 + g2
(2)

 X + g3
(2)

 X
2
 + ..... 

 
 
are the “generator polynomials” of' the code; and all operations are modulo-2. After multiplexing, the 
code word becomes: 
 

v(X) = v
(1)

(X
2
) + X v

(2)
(X

2
) …………………… (8.13) 

 
The indeterminate 'X' can be regarded as a “unit-delay operator”, the power of X defining the 

number of time units by which the associated bit is delayed with respect to the initial bit in the 

sequence. 

 

Example 8.5: 
 

For the (2, 1, 3) encoder of Fig 8.3, the impulse responses were: g
(1)

= (1,0, 1, 1), and  g
(2)

 = (1,1, 1, 1) 
 

The generator polynomials are: g
(l)

(X) = 1 + X
2
 + X

3
, and g

(2)
(X) = 1 + X + X

2
 + X

3
 

 

For the information sequence u = (1, 0, 1, 1, 1); the information polynomial is: u(X) = 1+X
2
+X

3
+X

4
 

 
The two code polynomials are then: 
 

v
(1)

(X) = u(X) g
(l)

(X)  = (1 + X
2
 + X

3
 + X

4
) (1 + X

2
 + X

3
) = 1 + X

7
 

 

v
(2)

(X) = u(X) g
(2)

(X)  = (1 + X
2
 + X

3
 + X

4
) (1 + X + X

2
 + X

3
) = 1 + X + X

3
 + X

4
 + X

5
 + X

7
 

 
From the polynomials so obtained we can immediately write: 
 

v
(1)

 = ( 1 0 0 0 0 0 0 1), and  v
(2)

 = (1 1 0 1 1 1 0 1) 
Pairing the components we then get the code word v = (11, 01, 00, 01, 01, 01, 00, 11). 

 

We may use the multiplexing technique of Eq (8.13) and write: 
 

v 
(1)

 (X
2
) = 1 + X

14
 and v 

(2)
 (X

2
) = 1+X

2
+X

6
+X

8
+X

10
+X

14
; Xv 

(2)
 (X

2
) = X + X

3
 + X

7
 + X

9
 + X

11
 + X

15
; 

 

and the code polynomial is: v(X) = v 
(1)

 (X
2
) + X v 

(2)
 (X

2
) = 1 + X + X

3
 + X

7
 + X

9
 + X

11
 + X

14
 + X

15
 

 
Hence the code word is: v = (1 1, 0 1, 0 0, 0 1, 0 1, 0 1, 0 0, 1 1); this is exactly the same as obtained 

earlier. 

 
The generator polynomials of an encoder can be determined directly from its circuit diagram. 

Specifically, the co-efficient of X
l
 is a '1' if there is a "connection" from the l-th shift register stage to 

the input of the adder of interest and a '0' otherwise. Since the last stage of the shift register in an 
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(n, l) code must be connected to at least one output, it follows that at least one generator polynomial 

should have a degree equal to the shift register length 'm', i.e. 
 

m  Max deg  g
( j )

 ( X ) ……………… (8.14) 

1  j  n   
 

In an (n, k) code, where k > 1, there are n-generator polynomials for each of the k-inputs, each 

set representing the connections from one of the shift registers to the n-outputs. Hence, the length Kl 
of the l-th shift register is given by: 
 

K l   

Max 

deg  gl 
( j )

 ( X ), 1  l  k …………… (8.15) 

 

1  j  n 
 

 

Where gl 
(j)

 (X) is the generator polynomial relating the l-th input to the j-th output and the encoder 
memory order m is: 

 
Max 

Max   
 

m   1  j  deg  gl 
(
 
j
 
)
 ( X ) 

  
 

1  l  k 
K

 
l
 ………… (8.16) 

 

  1  l  k   
  

Since the encoder is a linear system and u 
(l)

 (X) represents the l-th input sequence and v 
(j)

 (X) 

represents the j-th output sequence the generator polynomial gl 
(j)

 (X) can be regarded as the 'encoder 
transfer function' relating the input - l to the output – j. For the k-input, n- output linear system there 
are a total of kn transfer functions which can be represented as a (k  n) "transfer function matrix". 

  g1
( 1 )

 ( X ),   g1 
( 2 )

 ( X ),  L  g1 
( n ) 

( X )   
 

  

g ( 1 ) ( X ),   g 
 ( 2 )

 ( X ),  L  g 
 

( n ) 
   

 

 
 2 2 ( X )   

 

G( X )  
 2      

……………… (8.17) 
 

  M 
 M M 

 
M 
 

 

 
 

   
 

  
 

 

g ( 1 ) ( X ),   g 
 ( 2 )

 ( X ),  L  g 
 

( n ) 
  

 

  

k k 
( X )   

 

   k        
 

 
 
Using the transfer function matrix, the encoding equations for an (n, k, m) code can be expressed as 

 
V(X) = U(X) G(X) …………… (8.18) 

 

U(X) = [u 
(1)

 (X), u 
(2)

 (X)...u 
(k)

 (X)] is the k-vector, representing the information polynomials, and. 

V(X) = [v 
(1)

 (X), v 
(2)

 (X) … v 
(n)

 (X)] is the n-vector representing the encoded sequences. After 
multiplexing, the code word becomes: 
 

v(X) = v
(1)

(X
n
) + X v

(2)
(X

n
) +X

2
 v

(3)
(X

n
)+…+ X  

n-l
 v

(n)
(X

n
) …………… (8.19) 

 
Example 8.6: 
 
For the encoder of Fig 8.4, we have: 
 

g 1 
(1)

 (X) = 1 + X, g 2 
(1)

 (X) = X 

g 1 (2) (X) = 1, g 2 (2) (X) =1+ X 

g 1 (3) (X) = 1 , g 2 (3) (X) = 0 
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1  X 1 1 
 

 G( X )  
X 1  X 

 
 

 0 
 

For the information sequence u 
(1)

 = (1 0 1), u 
(2)

 = (1 1 0), the information polynomials 

are: u 
(1)

 (X) = 1 + X
2
, u

(2)
(X) = 1 + X 

 

Then  V(X) = [v 
(1)

 (X), v 
(2)

 (X), v 
(3)

 (X)]   
 

= [1 + X
2
, 1 

1  X 1 1 
 

+ X] 

1  X 

= [1 +X
3
, 0, 1+X

2
] 

 

 
X

 0 
 

Hence the code word is: 
 

v(X) = v
(1)

(X
3
) + Xv

(2)
(X

3
) + X

2
v
(3)

(X
3
) 

 

= (1 + X
9
) + X (0) + X

2
(1 + X

6
)  

 

= 1 + X
2
 + X

8
 + X

9
  

 

 v = (1 0 1, 0 0 0, 0 0 1, 1 0 0).  
 
This is exactly the same as that obtained in Example 8.3.From Eq (8.17) and (8.18) it follows that: 

 

8.5.1 State Diagrams: 
 
 

The state of an encoder is defined as its shift register contents. For an (n, k, m) code with k > 1,  
k 

i-th shift register contains ‘ Ki’ previous information bits. Defining  K  ∑Ki   as the total encoder -  
i 1  

memory (m - represents the memory order which we have defined as the maximum length of any 

shift register), the encoder state at time unit T', when the encoder inputs are, {u l 
(1)

, u l 
(2)

…u l 
(k)

}, 
are the binary k-tuple of inputs: 
 

{u l-1 
(1)

 u l-2 
(1)

, u l-3 
(1)

… u   l-k 
(1)

; u l-1 
(2)

, u l-2
(2

, u l-3 
(2)

… u   l-k 
(2)

; … ;   u l-1 
(k)

 u l-2 
(k)

, u l-3 
(k)

… u   l-k 
(k)

},  
and there are a total of 2

k
 different possible states. For a (n, 1, m) code, K = K1 = m and the encoder 

state at time unit l is simply {ul-1, u l -2 … u l-m}. 
 

Each new block of k-inputs causes a transition to a new state. Hence there are 2
k
 branches 

leaving each state, one each corresponding to the input block. For an (n, 1, m) code there are only two 
branches leaving each state. On the state diagram, each branch is labeled with the k-inputs causing 
the transition and the n-corresponding outputs. The state diagram for the convolutional encoder of Fig 
8.3 is shown in Fig 8.10. A state table would be, often, more helpful while drawing the state diagram 
and is as shown. 

 

State table for the (2, 1, 3) encoder of Fig 8.3 
 
            

 State S0 S1 S2 S3 S4 S5 S6 S7  
 

 Binary 
000 100 010 110 001 101 011 111 

 
 

 
Description 
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Recall (or observe from Fig 8.3) that the two out sequences are: 
 

v 
(1)

 = ul + ul – 2 + ul – 3 and 

v 
(2)

 = ul + ul – 1 + ul – 2 + ul – 3 
 
Till the reader, gains some experience, it is advisable to first prepare a transition table using the 
output equations and then translate the data on to the state diagram. Such a table is as shown below:  

State transition table for the encoder of Fig 8.3 

Previous Binary Input Next Binary ul ul – 1 ul – 2 ul - 3 Output 

State Description  State Description       

S0 0  0  0 0 S0 0 0 0 0 0 0 0 0 0 

  1 S1 1 0 0 1 0 0 0 1 1 

S1 1  0  0 0 S2 0 1 0 0 1 0 0 0 1 

  1 S3 1 1 0 110 0 1 0 

S2 0  1  0 0 S4 0 0 1 0 0 1 0 1 1 

  1 S5 1 0 1 101 0 0 0 

S3 1  1  0 0 S6 0 1 1 0 1 1 0 1 0 

  1 S7 1 1 1 111 0 0 1 

S4 0  0  1 0 S0 0 0 0 0 0 0 1 1 1 

  1 S1 1 0 0 100 1 0 0 

S5 1  0  1 0 S2 0 1 0 0 1 0 1 1 0 

  1 S3 1 1 0 110 1 0 1 

S6 0  1  1 0 S4 0 0 1 0 0 1 1 0 0 

  1 S5 1 0 1 101 1 1 1 

S7 1  1  1 0 S6 0 1 1 0 1 1 1 0 1 

  1 S7 1 1 1 111 1 1 0 
             

 

For example, if the shift registers were in state S5, whose binary description is 101, an input ‘ 1’ 

causes this state to change over to the new state S3 whose binary description is 110 while producing 
 
  



Information Theory and Coding                                                                                                                                        10EC55 

 

Dept. of ECE/SJBIT                 Page 211 

 

  
 
 
an output (0 1). Observe that the inputs causing the transition are shown first, followed by the 

corresponding output sequences shown with in parenthesis. 
 

Assuming that the shift registers are initially in the state S0 (the all zero state) the code word 
corresponding to any information sequence can be obtained by following the path through the state 
diagram determined by the information sequence and noting the corresponding outputs on the branch 

labels. Following the last nonzero block, the encoder is returned to state S0 by a sequence of m-all-
zero block appended to the information sequence. For example, in Fig 8.10, if u = (11101), the code 
word is v = (11, 10, 01, 01, 11, 10, 11, 10) the path followed is shown in thin gray lines with arrows 
and the input bit written along in thin gray. The m = 3 zeros appended are indicated in gray which is 
much lighter compared to the information bits. 

 

Example 8.12: A (2, 1, 2) Convolutional Encoder: 

 

Consider the encoder shown in Fig 8.15. We shall use this example for discussing further graphical 

representations viz. Trees, and Trellis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For this encoder we have:  v l 
(1)

 = u l + u l – 1 + u l – 2 and v l 
(2)

 = u l + u l – 2    
The state transition table is as follows.           

 State transition table for the (2, 1, 2) convolutional encoder of Example 8.12 

 Previous Binary Input  Next  Binary u l u l – 1 u l - 2 Output 
 state description   State  description      

 S0 0  0 0  S0  0  0  0 0 0 0 0 

    1  S1  1 0  1 0 0 1 1 

 S1 1  0 0  S2  0  1  0 1 0 1 0 

    1  S3  1 1  1 1 0 0 1 

 S2 0  1 0  S0  0  0  0 0 1 1 1 
    1  S1  1 0  1 0 1 0 0 

 S3 1  1 0  S2  0  1  0 1 1 0 1 
    1  S3  1 1  1 1 1 1 0 
                

 
The state diagram and the augmented state diagram for computing the ‘complete path 

enumerator function’ for the encoder are shown in Fig 8.16. 
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8.5.3 Catastrophic Code: 

 
We shall re-consider the catastrophic codes considered earlier. The state diagram of a (2, 1, 2) 

code is shown in Fig 8.17. Notice that for a catastrophic code "the state diagram consists of a loop of 

zero weight other than the self loop around the state So". 

It is the characteristic of a catastrophic 8.5.4TreeandTrellisDiagrams: 

code that an information sequence of infinite  
weight produces a finite weight code word. 

 
In a   non-catastrophic   code   which 

contains no zero weight loops other than the 

self  loop  around  the  all  zero  state  So,  all 
infinite  weight  information  sequences  must 
generate  infinite  weight  code  words,  and 

minimum  weight  code  word  always  has  a 

finite length. 
 

The best achievable dfree for a convolutional 

code with a given rate and constraint length  
has  not  been  determined  exactly.  However, 

results are available with respect to the lower 

and upper bounds on dfree  for the best code, 
obtained using random coding approach. It is 

observed that more free distance is available 

with non-systematic codes of a given rate and 

constraint length compared to the systematic 

codes  and  thus  has  important  consequences 

when a code with large dfree  must be selected 
for use with either the Viterbi or Sequential 

decoding. 
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Let us now consider other graphical means of portraying convolutional codes. The state 

diagram can be re-drawn as a 'Tree graph'. The convention followed is: If the input is a '0', then the 

upper path is followed and if the input is a '1', then the lower path is followed. A vertical line is called 

a 'Node' and a horizontal line is called 'Branch'. The output code words for each input bit are shown 

on the branches. The encoder output for any information sequence can be traced through the tree 

paths. The tree graph for the (2, 1, 2) encoder of Fig 8.15 is shown in Fig 8.18. The state transition 

table can be conveniently used in constructing the tree graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Following the procedure just described we find that the encoded sequence for an information 
sequence (10011) is (11, 10, 11, 11, 01) which agrees with the first 5 pairs of bits of the actual 
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encoded sequence. Since the encoder has a memory = 2 we require two more bits to clear and re-set 

the encoder. Hence to obtain the complete code sequence corresponding to an information sequence 

of length kL, the tree graph is to extended by n(m-l) time units and this extended part is called the 

"Tail of the tree", and the 2kL right most nodes are called the "Terminal nodes" of the tree. Thus the 

extended tree diagram for the (2, 1, 2) encoder, for the information sequence (10011) is as in Fig 8.19 

and the complete encoded sequence is (11, 10, 11, 11, 01, 01, 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At this juncture, a very important clue for the student in drawing tree diagrams neatly and 
correctly, without wasting time appears pertinent. As the length of the input sequence L increases the 

number of right most nodes increase as 2
L

. Hence for a specified sequence length, L, compute 2
L

. 

Mark 2
L

 equally spaced points at the rightmost portion of your page, leaving space to complete the m 

tail branches. Join two points at a time to obtain 2
L-l

 nodes. Repeat the procedure until you get only 
one node at the left most portion of your page. The procedure is illustrated diagrammatically in Fig 
8.20 for L = 3. Once you get the tree structure, now you can fill in the needed information either 
looking back to the state transition table or working out logically. 
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From Fig 8.18, observe that the tree becomes "repetitive' after the first three branches. Beyond the 

third branch, the nodes labeled S0 are identical and so are all the other pairs of nodes that are 
identically labeled. Since the encoder has a memory m = 2, it follows that when the third information 
bit enters the encoder, the first message bit is shifted out of the register. Consequently, after the third 

branch the information sequences (000u3u4---) and (100u3u 4---) generate the same code symbols and 

the pair of nodes labeled S0 may be joined together. The same logic holds for the other nodes. 

 
Accordingly, we may collapse the tree graph of Fig 8.18 into a new form of Fig 8.21 called a 

"Trellis". It is so called because Trellis is a tree like structure with re-merging branches (You will 

have seen the trusses and trellis used in building construction). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Trellis diagram contain (L + m + 1) time units or levels (or depth) and these are labeled 

from 0 to (L + m) (0 to 7 for the case with L = 5 for encoder of Fig 8.15 as shown in Fig8.21. The 

convention followed in drawing the Trellis is that "a code branch produced by an input '0' is drawn as 

a solid line while that produced by an input '1' is shown by dashed lines". The code words produced by 

the transitions are also indicated on the diagram. Each input sequence corresponds to a specific path 

through the trellis. The reader can readily verify that the encoder output corresponding to the sequence u = 

(10011) is indeed v = (11, 10, 11, 11, 01, 01, 11) the path followed being as shown in Fig 8.22. 
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A trellis is more instructive 
than a tree graph in that the finite 

state behaviour of the encoder is 
explicitly brought-out. Assuming 

that the encoder always starts in state 

S0 and returns to S0, the first m - 

time units (levels or depth) 

correspond to the encoder’s 

departure from S0 and the last m-

levels corresponds to its return to S0. 

Clearly, not all the states can be 
reached in these two portions of the 

Trellis. However, in the centre portion 
of the Trellis, all states are possible 
and each level (time unit) contains a 
replica of the state diagram and is 
shown in Fig 8.23. There are two 
branches leaving and entering each 
state. 
 

 
In the general case of an (n, k, m) code and an information sequence of length kL, 

there are 2
k
 branches leaving and entering each state and 2

kL
 distinct paths through the 

trellis corresponding to the 2
kL

 code words. 
 

 

The following observations can be made from the Trellis diagram 

 
1. There are no fundamental paths at distance 1, 2 or 3 from the all   zero path. 

 
2. There is a single fundamental path at distance 5 from the all zero path. It diverges from 

the all-zero path three branches back and it differs from the all-zero path in the single 

input bit. 

 

3. There are two fundamental paths at a distance 6 from the all zero path. One path 

diverges from the all zero path four branches back and the other five branches back. Both 

paths differ from the all zero path in two input bits. The above observations are depicted 

in Fig 8.24(a). 

 

4. There are four fundamental paths at a distance 7 from the all-zero path. One path 

diverges from the all zero path five branches back, two other paths six branches back and 

the fourth path diverges seven branches back as shown in Fig 8.24(b). They all differ 

from the all zero path in three input bits. This information can be compared with those 

obtained from the complete path enumerator function found earlier. 
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