
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263084656

A Beginners Guide to AVR

Technical Report · June 2014

CITATIONS

0

READS

1,862

1 author:

Aravind E Vijayan

ETH Zurich

7 PUBLICATIONS 29 CITATIONS

SEE PROFILE

All content following this page was uploaded by Aravind E Vijayan on 14 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/263084656_A_Beginners_Guide_to_AVR?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/263084656_A_Beginners_Guide_to_AVR?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aravind_E_Vijayan?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aravind_E_Vijayan?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ETH_Zurich?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aravind_E_Vijayan?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aravind_E_Vijayan?enrichId=rgreq-e3652acef9fa46bc1843e8624fdf00f3-XXX&enrichSource=Y292ZXJQYWdlOzI2MzA4NDY1NjtBUzoxMDc4ODAwOTA5NjgwNjRAMTQwMjczMjAyNjc0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

A Beg inn er ’ s Gu id e to AVR
A r a v i n d E V i j a y a n

2 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2014 ARAVIND E VIJAYAN.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
With no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

3 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Contents
AVR Microcontroller Series .. 4

Introduction to Embedded Coding ... 5

What is a datasheet? ... 6

Atmel AVR ATmega 16 .. 7

Electrical Characteristics ... 8

Features of ATmega 16 .. 8

Clock Source and various options available .. 9

General Purpose Registers ... 10

General Purpose Input Output (GPIO) .. 11

Basic Code ... 15

Serial Communication using ATmega 16 .. 18

UART initialization .. 19

Writing functions to send and receive data ... 21

Interrupts .. 23

Analog to Digital Conversion (ADC) .. 26

Initializing the ADC .. 28

Reading the ADC value .. 32

Analog Comparator .. 34

Timers and Counters .. 36

Normal Mode .. 38

Clear Timer on Compare Match (CTC) mode .. 38

Fast PWM mode ... 39

Phase correct PWM mode ... 42

4 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

AVR Microcontroller Series

 The AVR architecture was developed by two graduate students of Norwegian
Institute of Technology, Alf-Egil and Vegard Wollan as part of their master’s degree
thesis. AVR is a Harvard architecture 8 bit RISC microcontroller. This is one of the first
microcontrollers to use an on chip flash memory to store the program code. Anyone
would wonder what AVR stands for. Well stands for Alf egil Bogen Vegard Wollan
RISC microcontroller, also known as Advanced Virtual RISC.

You might be wondering what this RISC means?

RISC stands for Reduced Instruction Set Computing. A microcontroller instruction set
may follow either of the following:

1) RISC - Reduced Instruction Set Computing

2) CISC - Complex Instruction Set Computing

RISC simply means that each instruction designed for the microcontroller can perform
only a single task. For example

ADD R1, R2

This is an assembly instruction which is there in the AVR instruction set. This
instruction performs only one single task. Add two values. If all the instructions are like
this, then it is called RISC instruction set.

So what is Instruction Set?

Yes it is the set of (or let’s say it’s a list of) all the instructions (for e.g. ADD, SUB)
designed for the microcontroller architecture.

CISC instructions can perform more than one operation per instruction. You will
understand it more clearly as the tutorial progresses. CISC is mostly used in DSP
processors. For example, let’s say we have a DSP processor which has an instruction
XYZ. If XYZ can performs more than one operations, for example add two values and
then find the square of that value, then it is called a CISC instruction.

Having understood the difference between the RISC and CISC instructions, let’s go
back to AVR and check the variants of microcontrollers which use the AVR
architecture.

5 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

There are three kind of microcontroller series available in the market which are based
on the AVR architecture:

1) Tiny AVR

2) Mega AVR

3) Xmega AVR

The following table compares the above mentioned AVR microcontroller series:

uC Series Pins Memory Remarks
TinyAVR 6-32 0.5-8 KB Small size
MegaAVR 28-100 4-256 KB More peripherals

XmegaAVR 44-100 16-384 KB DMA

Introduction to Embedded Coding

Embedded coding in C is more or less like normal C/C++ coding, except for the libraries
and library functions that we use in embedded coding are different. But why use AVR
GCC when Arduino gets the same thing done with less effort. Arduino constructs and
header files compromised the efficiency of code for simplicity of coding. Often, we find
that codes written in Arduino are slower than those written in C using AVR GCC.
Therefore Arduino is not suitable when efficiency is crucial for our application.

So how simple is Embedded C coding? Think I had to suddenly change the
microcontroller that I was using. For example, from ATmega 16 to ATmega 32. Do I
have to write the code from the very beginning?

The Answer is No. Provided the microcontrollers belong to the same architecture (in
our case AVR), significant changes in code won’t be there. If header files are available,
then AVR coding is easy, hassle free and much more efficient than Arduino. In this
tutorial series I will be using ATMega16 for implementations.

6 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

What is a datasheet?

Every now and then, when you work with electronics components you hear about
specifications. You would wonder if your circuit blow up. So how to ensure that your
design is suited for the electrical and mechanical characteristics of the microcontroller?

This is when a datasheet becomes useful for you. A datasheet is an official document
published by the device manufacturer which contains all the information a developer
would need like the electrical characteristics say maximum voltage, maximum output
current, no of input pins, other features of the microcontroller etc.

Any electronic component available in the market has a datasheet. Even LED and
buzzer has their datasheets.

7 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Atmel AVR ATmega 16

As discussed earlier, ATmega 16 is an AVR microcontroller manufactured by Atmel.
It follows 8 bit RISC Harvard architecture. The pin out of the microcontroller is given
below:

This is the pin diagram of the Dual Inline Package of ATmega 16. The microcontroller
is also available in TQFP and QFN packages. Mentioned just for your information.

Now take a glimpse at the pinout. Let’s understand the pinout of this microcontroller in
detail. ATmega 16 is a 40 pin IC. The pins are numbered from 1 to 40. Now consider
this

(Additional Feature) Primary Function – Pin number

This is the fashion in which the pins are named here. For example pin no 40 primarily
function as PA0(we will discuss what this shortly), whereas it also has the additional
capability to function as ADC0.Also we note that pin 10 is VCC, pin 11 and 31 are
GND, whereas Pin 30 is AVCC. AVCC is the supply for the ADC module and must be
either shorted to VCC or connected to the separate analog supply line if any. Still the
AVCC should be within VCC +/- 3V.

8 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Electrical Characteristics
The table shown below has been snipped from the 291st page of ATmega 16 datasheet:

The table is self-explanatory. The voltage supply may range from 2.7V – 5.5V normally
in case of ATmega 16L while it is 4.5V – 5.5V in the case of ATmega 16.

Features of ATmega 16

Now let’s try to understand the features of ATmega 16. Some of the important
features of the microcontroller are listed below:

1) 4 8-bit GPIO ports

2) 1 UART (serial communication) module

3) 1 SPI module (used to interface SD card, Ethernet module etc.)

4) I2C module (used to communicate with temperature sensors, accelerometers
etc.)

5) 512 Bytes EEPROM

6) Two 8-bit and One 16-bit Timer/Counter module (used for wave generation)

7) Four PWM channels (for servo motor control)

8) 8-channel 10 bit ADC

9 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Clock Source and various options available

A microcontroller is a synchronous device which means that it need a clock so that it
can time its functioning. By default ATmega 16 has a 1 MHz RC oscillator which
provides the square wave clock signal which the microcontroller uses as clock source.
The problem with the RC oscillator is that it is not accurate. If we are not satisfied with
the operating frequency, we have an option to connect a crystal externally to clock the
microcontroller. A crystal is an oscillator with two pins. The figure shows how to
connect your crystal to the microcontroller.

We cannot connect any arbitrarily fast crystal to the microcontroller. For the ATmega
16, the maximum crystal frequency is 16 MHz whereas it is 8 MHz for AT mega 16L.

So what about the capacitors shown in the figure?

The recommended capacitance values are in the range of 12 – 22 pF. If you do not
connect the capacitors, the crystal won’t generate stable clock signal and therefore, the
microcontroller won’t turn on. But connecting a crystal doesn’t mean that the
microcontroller will work at that frequency. There is little programming involved to
configure the microcontroller to work using the crystal which will be dealt at a later
stage in this tutorial.

10 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

General Purpose Registers

The general purpose register is used to store the local variables and the temporary data
used by the program. Each of the I/O register configures the control registers of the
various I/O peripherals of the uC. Each of the registers can have a value of either 0 or
1. The value given to these registers determine whether the various special features of
the uC is activated or not. ATmega is an 8 bit microcontroller which means that each
register in this microcontroller will be of 8 bit width. We cannot access each bit of the
register individually, but can only edit the value of the register as a whole. We will learn
how to tackle this drawback shortly. Given below is a register in the ADC module.

So if you want to put a ‘1’ into REFS1 you have to do the following

ADMUX = 0b10000000;

Note that REFS1 is the MSB of the register ADMUX. So when we assign the value to
any register we write the value from MSBLSB.

Now it’s time for us to get into the real stuffs. Let’s start with the basic peripheral
available on any microcontroller or processor whether it is a simple ATmega 16 or one
of the cutting edge processors presently available like the Intel i7. It is the GPIOs.

11 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

General Purpose Input Output (GPIO)

GPIOs are peripherals which are meant to serve the purpose of normal input output.
These pins can be, for example, used to turn on or off a motor, a fan, a lamp. These pins
have some inherent configurations which we need to take care of. Before going into all
those details let’s find the GPIOs available on ATmega 16. There are 4 8-bit GPIO ports
available on ATmega 16 namely PORTA, PORTB, PORTC and PORTD.

It is clear that the each of these ports contain 8 pins each. For example, PORTA contains
pins PA0…PA7. They are clubbed into 8 because the microcontroller is 8-bit. Each port
is byte addressable. We will come to that later. So in total there are 32 GPIO pins in an
ATmega 16.

Now let’s try to understand how to control GPIOs. The following is the sequence in
which a GPIO need to be configured.

 Set a GPIO as Input/ Output

This is managed by configuring the register DDRx. Where x may be A, B, C or
D. A value of ‘1’ means that the pin is output whereas ‘0’ means that the pin is
input. All the pins are by default input pins. I have already mentioned that each
port is 8 bit in size and are byte addressable. Byte addressable means that the
register value can be configured only as a block. That is, we cannot access a
particular pin individually. For example if I need to change the PA2 to input
pin, I need to set the new value for the whole 8 pins in the PORTA.

12 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

For example consider

DDRA = 0b10110100;

The ‘0b’ denotes that the value written is binary. This is C syntax and has
nothing to do with embedded programming. The above line will configure the
PORTA input/ output configuration as shown in the table below:

PIN PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
DDR
value

1 0 1 1 0 1 0 0

Input /
Output

Output Input Output Output Input Output Input Input

I hope that setting up the DDR is clear by this time. So whether you need to
change a single pin value or completely change the configuration of the port, it’s
the same. You have to access the whole register and edit the required parts.

Depending on whether the port/pin is configured as an input / output pin, there
are two separate registers to take care of input and output.

 What if a pin is configured as an output pin?

Now consider that we have set a particular pin as output pin. Is it over? Don’t
we have to set whether the pin should be HIGH (+5V) or LOW (0V)? This is
where another register of ATmega 16, PORTx comes into picture. This is also a
byte addressable register like the others. PORT register is used to set any of
the I/O pins to HIGH (1) or LOW (0) as required. Now consider we write a
line of code

PORTC = 0b11000010;

Here we wrote the number in binary. But we can write the same using
hexadecimal representation also. The same definition can be written as

PORTC = 0xC2;

Here the ‘0x’ represents that it is a hexadecimal representation. This can be
written in the decimals also. In order to write in decimal, just convert the
hexadecimal to corresponding decimal and assign it to the port. For example,

0xC2 = 194

PORTC = 194;

13 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

So if you do a declaration of any of the above mentioned three forms, its effect
on the PORTC is shown in the table given below:

PIN PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0
PORT
value

1 1 0 0 0 0 1 0

Output
voltage

HIGH HIGH LOW LOW LOW LOW HIGH LOW

The above table also signifies that the MSB of the assigned value is assigned to
PC7. So till now we discussed, what to do if a pin is set as output. What is a pin
is set to input? How do we read it? Are inputs too read using some registers?

 What if a pin is configured as an input pin?

Yes, there are registers to read the inputs too. Obviously these are also going to
be 8-bit in width, and yes they are byte addressable. The PINx register serves
this purpose. So how do we read it?

char x = PINB;

The eight bit value of the PORTB will be written into the register. This can be
used to check a particular configuration or can be used to do something else. Any
pin can be read regardless of whether it is set as an input pin or not in its DDR
register. Till now we considered how to configure a pin as input/ output, how to
read it if it is an input pin and how to set the pin HIGH/ LOW if it is an output
pin. So what happens if a pin is not configured as an output pin, but we try to set
it high using PORT register?

 What if we try to use an input pin as output?

Well, this is not a hazard. If you try to set an input pin HIGH then that pin the
pull up resistor connected to the pin gets activated. This is a special condition
called Pull Up mode. A resistance of 1K comes in pull up configuration with the
pin. So why do we need that configuration?

Consider that we need to read a value from a particular pin. If the value to be
read is not “driven” all the way to 5v, the pull up resistor makes sure that the
value reached 5v. When the value to be read is 0v, it remains as such due to the
high resistance value of 1K. So if we try to check the voltage of the pin using a
multi meter, it will be 5V but it doesn’t mean that the pin is output pin. It is still
an input pin which is in pull up mode.

Having discussed all the different configurations, let’s try out this problem.

14 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Consider that the following configuration has been programmed into the
microcontroller.

DDRD = 0xAA;

PORTD = 0x7E;

Now let us analyze the various states of the pins in PORTD.

PIN PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0
DDR 1 0 1 0 1 0 1 0

PORT 0 1 1 1 1 1 1 0
State Output

LOW
Input
Pull
Up

Output
HIGH

Input
Pull
Up

Output
HIGH

Input
Pull
Up

Output
HIGH

Input
Hi

impedance

With this we conclude our discussion on GPIOs. GPIOs are the simplest to understand
of all the modules. Also, they are the simplest to configure. Now let’s get our feet wet.

15 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Basic Code

The code given below shows the basic structure of an embedded C code.

#include <avr/ io.h> and #include <util/ delay.h> are two basic header files you
need to add in all your embedded codes. The first on has all the register information
whereas the second header file contains the delay function. We will discuss about
them shortly.

Now let’s write a code to implement the configuration given in the following table.

PIN PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
Input or output O/P O/P I/P O/P I/P O/P I/P I/P

O/P VOLTAGE 0v 5v HiZ 5v HiZ 0v HiZ HiZ
Where HiZ means high impedance which is when both DDR and PORT is set to ‘0’

Now consider that we have a sensor connected to PORTA. We need to write a code
such that it waits until all eight pins are high and does something when this condition is
satisfied. The code goes like this.

16 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

I hope you understood how configure the GPIOs by this time. Now let’s do an
interesting real world problem. Before that I have to explain you the various delay
functions available.

As it was pointed out earlier #include <util/ delay.h> includes the header file which
contains all the delay function declarations. They are:

1) _delay_ms(int delay_in_milliseconds);

2) _delay_us(int delay_in_microseconds);

Now consider the following problem.

Lakshmi wants to implement an automatic door system which closes the door when it
is found to be open. A motor is connected through a motor driver to PA7.when a high
voltage is applied to PA7, the motor closes the door. A switch is connected to PC5(with
all other pins in PORTC grounded) and it holds a high value whenever the door is
closed. Write a code to help Lakshmi.

In all these codes we change the whole 8 bits. Is there any other method to edit each
bit? Obviously yes, because we can do that in Arduino. So how this is done? This is
done using the bitwise operations in C/C++.

17 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Consider the following line

PORTA |= (1<<n);

This will set the nth bit of PORTA HIGH without affecting the other bits. If you want to
do the same for multiple pins say if you want to set pins ‘n1’ and ‘n2’ HIGH. This can
be done as follows:

PORTA |= ((1<<n1)|(1<<n2));

This set pins high individually, but how to clear them. This is done as follows:

PORTA &= ~(1<<n);

PORTA &= ~((1<<n1)| (1<<n2));

The working can be easily understood if you know bitwise operations in C. Our
objective is to make coding similar to Arduino. Simple, make these macros and keep
on the top of our code. Generally we name it as sbi() for setting bit and cbi() for clearing
bit. You will understand the usage once you read the following code.

AVR GCC has many macro statements in the io.h header files makes value of PA0 = 0,
PD6 = 6, PC5 = 5 etc. This makes coding much simpler and obvious. Consider the
following code which is highly readable.

We will use this kind of construct throughout our discussions now onwards.

Serial monitor in the Arduino is a boon. So how to get this feature in AVR. Well, it’s a
bit of coding to get all the functions in place. Once we create our header file, it will be
really simple.

18 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Serial Communication using ATmega 16

Serial communication is the common term coined to USART which stands for
Universal Synchronous and Asynchronous Receiver and Transmitter. This as the name
indicates, send out or receives in data serially. It enables us to communicate in full
duplex asynchronous mode with our computer or another hardware. The
communication is done using the Tx and Rx pins on the ATmega 16.

It is evident that there is no clock line between the connected hardware. So how do we
ensure that the microcontroller can serially communicate while it is a synchronous
device? This is done under a mutual understanding. Both the receiver and transmitter
use the same clock frequency for their UART module. This doesn’t mean that the CPU
frequency of the microcontrollers need to be same, but that the UART must somehow
divide and generate the same frequency so that the transmitted sequence of data can be
reliably received at the receiver side.

So how is the data sent? What should I do so that the data will be sent? Well even though

it is tricky, once a header file is made things are simple. In order to do this we need to
understand how the UART transmission is done by the hardware. The data we need to
communicate must be written into an 8 bit register. This data is called data frame. The
hardware adds a START BIT to the beginning of the sequence in order to synchronize
the communication. The data might get corrupted during transmission and reception if
the two are not in synchrony. Therefore USART module provides us an option to decide
whether to use error detection algorithm called parity checking. To this frame, we add
a STOP signal to denote end of transmission. The number of STOP BITS can be either
one or two. The normal data frame configuration commonly used is called 8-N-1, which
means 8-bit transmission with no parity and one stop bit. In this tutorial we assume the
data frame that we need is of this configuration.

19 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

UART initialization

In order to send and receive data, we need to set up the hardware. This includes setting
the data frame configuration, which in our case is 8-N-1 and also the baud rate. Baud
rate is the rate at which data is transmitted or received. In other words, this is the clock
that we just discussed about. Only two hardware set with the same baud rate can
communicate. So setting the baud rate is also done during UART initialization. We need
to tweak configurations in a couple of registers related to the UART module in order to
get this done. The register of the UART module are discussed starting from page 163
in the ATmega 16 datasheet.

The above figure shows the three registers that need to be configured to properly
initialize the UART module.

 Baud Rate generation

The UBRR (USART Baud Rate Register) is a 16 bit register which contains
the baud rate information. How come 16 bit when ATmega 16 is 8 bit. Well,
this is done by cascading two 8 bit registers namely UBRRH and UBRRL as
shown in the figure given above. The normal Baud rates used for serial
communication are 4800, 9600, 19200, 38400, 57600, 76800, 115200 etc. But
how to find the UBRR value provided we have already decided upon the baud
rate value? Well Atmel has provided the relation in the datasheet. The equation
goes as follows:

20 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

 So we should put the lower byte of UBRR into UBRRL and the upper byte
into UBRRH. i.e.

 Enabling the transmitter and receiver module

The registers for this purpose can be found in the UCSRB register. Setting the
TXEN HIGH will enable the transmitter, whereas setting the RXEN HIGH will
turn on the receiver module. RXCIE stands for Receiver Interrupt Enable
whereas TXCIE stands for Transmitter Interrupt Enable. This will help us make
the code efficient by using interrupt to transmit and receive data rather than
poling. So for the time being the following line will do the job for us.

 Setting the data frame configuration

According to the datasheet, we need to set the URSEL when writing into the
UCSRC register. The data frame configuration is dealt with by the UCSRC
register.

UPM1 and UPM0 determines the parity information in the data. The following
table shows the various possibilities.

USBS is the bit that determines the number of stop bits. It is done as follows:

The bits UCSZ1:0 determines the number of data bits in the data frame being
transmitted. The details are given below:

21 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Having all these tables in hand, it’s so easy to decide the configuration that needs to be
programmed into the UCSRB register. The configuration for 8-N-1 is given below:

Putting all these into a function will get the UART initialization function set up.

Writing functions to send and receive data

Having successfully made the function to initialize the UART module, the next task is
to write functions to send and receive data. For that purpose we need to discuss about
some more registers.

Serial communication is a full duplex communication which means that data can be
transmitted and received simultaneously. We store the data that needs to be transmitted

22 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

in the UDR register. The received data is also stored in the same register UDR. But
how?

Actually we have two registers with the same name UDR. When we try to read on
register is used, whereas the other register is accessed when we try to write into it. This
is evident from the image of the register given above. Now how do we come to know
whether some data has been received? In the case of transmission of a stream of data,
how do we know whether the transmitter has completed sending the previous data and
that the transmitter is free and ready to send the next byte of data?

There are some bits dedicated in the UCSRA register to act as status registers for the
transmitter and receiver. In the case of receiver, if a new byte of data has been
completely received, then the bit RXC is set to 1. The bit is automatically cleared once
the data is read from the receive buffer.

In the case of transmitter, we have another bit which acts as the status bit, namely
UDRE. UDRE is set HIGH when the transmit buffer is ready to receive new data that
needs to be transmitted. Now having gone through the different registers that needs to
be checked during transmission and reception of data, we can write the required
functions. The following are the functions that will serve our purpose:

With this we conclude our discussion on serial communication. But it’s evident from
the above code that it is not efficient. We need to wait in a loop until the status is set.
This is called polling. We cannot perform any other task during this. Is there any way
out? Yes. Use the Interrupt modules in the microcontroller. The implementation of
receiver and transmitter using interrupt is left to you. We will discuss about the interrupt
pins in the coming section.

23 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Interrupts

This is the easiest module available in ATmega 16 to configure. Interesting isn’t it? So
what is this Interrupt? In the previous section when we made the functions to send and
receive data, I mentioned that looping in a while loop until a particular condition is
satisfied is not a good idea. We need to find an alternative for polling, and the answer
is Interrupts.

When an interrupt occurs, the microcontroller pauses the normal flow of the code, and
goes into a special function which contains some special code which needs to be run
when an interrupt occurs. Once this special function is completely run, the normal flow
of the code is resumed. That is, we no longer need to wait polling. Rather than that, we
can enable interrupt somehow, so that the hardware triggers the execution of the
required set of code on itself when the condition is satisfied.

Let’s look at this from a different angle to make the use of interrupts much more obvious
to you. Microcontrollers executes the instructions in the sequence in which the program
is written. But sometimes it might be needed to handle high priority events for example
power supply failure. In this case we need to take precautions to make sure all the
unsaved data is stored to the memory. An interrupt can help us detect the power supply
failure. This will interrupt the normal execution of the program and will execute a
special function. This function is known as Interrupt Service Routine. So the Interrupt
Service Routine (ISR) will take care that the data is saved and then the normal execution
of the program is resumed from where the program was interrupted.

Interrupts in an ATmega can be classified largely into two:

1) Internal Interrupts

2) External Interrupts

Internal interrupts are those interrupts which are generated by some of the modules
inside the microcontroller. For example, the UART module can be configured to
interrupt when a new byte of data is received. Or it can be configured to interrupt when
the current transmission is over and the transmitter is ready for receiving new data to
communicate. Like the UART module, most of the other modules have interrupts. These
interrupts are called the internal interrupts and takes care of states inside the
microcontroller that we need to take care of often. Now what if we need to check for a
particular condition which is external to the microcontroller. Say the power supply
failure that we considered in the example above. We need to take in an input which
indicates presence of power supply and generate an input when it’s gone.

External interrupts come to our help here. There are four pins on the microcontroller
which can be used to detect external interrupts namely, RESET, INT0, INT1, and INT2.
RESET is considered an interrupt even when the program is not resumed after a reset.

24 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Now I will explain how to configure INT0 and INT1 for our purpose. Before that as
usual we need to understand the registers that controls the interrupt module.

The two registers that needs to be configured to initialize the interrupt module are

1) MCU Control Register – MCUCR

2) General Interrupt Control Register – GICR

Yeah let’s do it. The following table shows the different conditions that the interrupt
can be configured to get triggered at.

ISC00:11 are in the MCUCR register. So If you want to configure the interrupt 0 to get
triggered at a rising edge, the MCUCR must be configured as below:

Setting the MCUCR isn’t enough. We need to turn on the interrupt, in this case INT0
in the GICR register by setting it so that the interrupt module for INT0 is enabled.

25 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Setting the INT0 enables the INT0 inside the module, but in order that we can use any
interrupt in the microcontroller, we need to make sure that the global interrupt is
enabled. The global interrupt bit is the ‘I’ bit in the Status Register (SREG) of ATmega
16. Anyway we need not set the bit like that. Calling the function sei () enables global
interrupt. cli () is the function that can be used to clear the global interrupt in case you
want to. The function to initialize the interrupt module so that both INT0 and INT1 are
triggered at any logic change is shown below:

Yes we configured the interrupt module. But where do we write the code that will get
run when an interrupt is triggered? We write it in the Interrupt Service Routine (ISR).
Every interrupt has an address which is the address in the memory where our interrupt
code is written. This is INT0_vect for INT0 and INT1_vect for INT1. So the ISR
would like this.

With this we conclude our discussion on interrupts. Using interrupts can really help us
speed up our program. So next time when u need better performance you better try using
interrupts.

Well, we discussed about how to implement serial communication, how to make our
system efficient using interrupts, how to use the General Purpose Input Outputs etc. If
somebody come to you and ask, “Hey do you know to read a potentiometer value using
a microcontroller?” you will be like, O god this guy taught me bulls eye. In order to
avoid such a comment we will discuss the ADC module in the coming section.

26 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Analog to Digital Conversion (ADC)

A microcontroller is a device which can only understand two logical states namely,
HIGH (+5v) or LOW (0v). But all the information we wish to acquire in the real world
scenario are analog, like the temperature, humidity, pressure etc. In other words, we are
living in a world of analog signals. Even the ECG, EEG, all other similar bio potentials
are analog in nature. So how do we acquire these signals? It is done as described below.

There are 8 pins to which ADC data can be inputted namely ADC7:0 which are
multiplexed with the PA7:0 pins of ATmega 16.

Consider we have a 10 bit register. So the maximum value that we can store in a 10 bit
register is (210 -1) = 1023. We round the analog signal inputted to the microcontroller
into the nearest 10 bit binary number as follows. VCC is converted to 1023, (VCC/2)
to 511 and GND to 0. I hope that gives you a rough idea about the process. The ADC
converter used in ATmega 16 is a 10-bit successive approximation ADC. The
conversion process is worth reading. But it’s not required to understand the working of
ADC.

When I explained about the pin diagram of ATmega 16, I mentioned that there is a pin
AVCC which is the supply for the ADC module and must be either shorted to VCC or
connected to the separate analog supply line if any. Still the AVCC should be within
VCC +/- 3V. Another pin which is of our interest is the AREF pin.

27 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

AREF is the analog reference pin for the A/D Converter. If you're not using the A/D,
you don't need to connect AREF. So why do we need to discuss about the AREF?
Because, this sets the maximum voltage that can be read using the ADC module. That
is, AREF is the voltage which will be read as 1023. ATmega 16 gives us the flexibility
to select the AREF. These are the possible configurations. We can either use the internal
reference of AVCC or 2.56V (if we are using the internal reference, we need not connect
the AREF to anything at all.) or the external reference voltage supplied at the AREF
pin.

If you are not using the AREF pin, the best option is to connect it to ground through a
10nF or 100nF capacitor. In this case, we can still use the internal reference. Connecting
the AREF to ground is the stupidest thing you can ever think of. If you do so, the ADC
module cannot be used at all. If AREF is connected to VCC, then we cannot use the
2.56V internal reference, although the internal AVCC reference will still work.

ADC module has a clock of its own which is derived from the CPU frequency. The
ADC module is slow because of the limitations of the converter. So it needs a slower
clock. The ADC clock can therefore be selected by configuring the ADC prescaler.
Setting the prescale value sets the division factor to be used (we will discuss it shortly).
So the final ADC clock is given by

ADC clock =
��� �����

�������� ������

28 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Initializing the ADC

So the first thing we should do when initializing the ADC is to set the analog reference.
This is configured using the ADMUX register.

REFS1:0 are the reference selection bits. The following table shows the possible states.
Using these bits we can select the reference that we need, internal or external.

So if we need to configure the reference to AVCC, ADMUX should be configured as
shown below:

The next thing to configure is the alignment of the result in the register. Since the data
is a 10-bit number, it needs to be stored in a 16 bit register (a cascade of two 8 bit
registers, in a fashion similar to the UBBR in USART module). This means that the
data can be either adjusted to the left or right as per our wish. Setting the ADLAR to ‘1’
left adjusts the result, whereas the data is right adjusted by default. I will explain this
pictorially when we discuss how to read ADC value.

In this tutorial we will be using right adjusted data frame format.

MUX4:0 is used to select the analog input type and gain. The analog input can be either
a single ended input or a differential input. While single ended input is the normal input
that we give, differential input means that the difference in voltage between two pins
will be used as the analog input voltage. This is really useful when you want to remove
power supply noise from the signal. The internal amplifier can be used to amplify the
input signal if the ADC is configured to differential input configuration. Why do we
need a differential input? This is really helpful in case you need to read a bio potential
into the microcontroller. In this case, the signal input from both the acquisition
electrodes connected to our body will be having similar noise component. So if we

29 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

subtract the two we can remove the inherent noise. Wow. Well that’s interesting, at least
for me.

But the REFS4:0 need to be configured only when we need to select the ADC channel
to read. That is while we try to read a particular pin. Therefore, we will configure it at
a later stage in this tutorial while we discuss about reading the analog data.

There is one more register ADC Control and Status Register A which needs to be
configured. But what’s left to be configured? We haven’t yet enabled the ADC
module. We didn’t start the ADC conversion. And also we didn’t set the ADC clock
frequency using the ADC prescaler.

30 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Writing ‘1’ to ADEN will enable the ADC module. By default ADC module is turned
off, i.e. the ADEN is ‘0’. Likewise, setting the ADSC to ‘1’ will start the ADC
conversion. Please note that the converter should be explicitly turned on whenever we
need to read a data. Therefore we should also set the ADSC in the adc_read () function
that we are about to write.

ADIF and ADIE are needed only if we need to trigger some function when the ADC
conversion is completed. Oh, I forgot to mention, the ADC conversion will take some
time and therefore we need to wait until the value is converted completely by the
successive approximation ADC hardware in ATmega 16. So interrupt will help us make
the code much more efficient by automatically triggering the reading once the
conversion is completed.

ADPS2:0 are the ADC Prescaler bits which are used to set the clock division factor
which we discussed about in the introduction. It must be noted that there is a tradeoff
between faster conversion and precision. This means that faster the ADC clock we use,
less precise the conversion will be. So the ADC prescaler must be set depending on the
precision we need for the converter.

We have almost completely discussed about the ADCSRA register. Now it’s time to
configure it for our purpose. I wish to use a division factor of 8 for my ADC.

ADIF bit in the ADCSRA register will be set when the ADC conversion is completed.
Once the settings have been set, we need to wait until one conversion is successfully

31 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

completed. This is done as follows. This step in the initialization function cannot be
avoided even if interrupt is used.

Or it can be written as

So the initialization function will look like this.

It is up to you to add more function arguments so that the prescaler can be changed
without editing the ADC_init () function every time you need to. Now we’ll discuss
about how to read the ADC value.

32 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Reading the ADC value

You might be wondering what all we have to do in order to read from an analog value.
By this time, you must have understood that a single ADC module is dealing with the 8
ADC channels. So in order to read an analog value, we must first specify which ADC
channel you want to read from. This is done by configuring the MUX4:0 bits of
ADMUX register. For example if you want to read from the 6th channel, ie, ADC5, we
should configure the ADMUX register as shown below:

After selecting the channel we need to start ADC conversion. For this, the ADSC bit
needs to be set to ‘1’.

Once the conversion is started we need to wait until the conversion is completed. This
can be done in either one of the following ways:

 I hope you remember that we are using right adjusted data frame format. The result of
ADC sampling is stored in the register ADC. ADC is a 16 bit register but cannot be read
at one since ATmega 16 is an 8-bit microcontroller. So we need to read it from the two
8-bit registers ADC register is made of, namely, ADCL and ADCH. The alignment of
data depending on the ADLAR value is shown below:

33 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

The data read from the ADCL and ADCH registers can be combined as shown below:

Now we can write the adc_read () function which can read the channel we specify as
function parameter. The ADC inputs can be given to the pins PA7:0. Therefore, passing
the pin name as parameter will suffice. For example,

adc_read (PA1);

Will read the ADC value from the pin PA1. The function for this is given below:

Next we will discuss about the analog comparator module. Even though the names look
similar, they doesn’t have anything in common. Analog comparator, as the name
signifies can be used for comparing two analog signals. This is quite useful when we
do not want to add comparator and other analog hardware into our design.

34 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Analog Comparator

This is one of the simplest module to configure. Tweak a single register and it’s over.
Interesting isn’t it? It is for me. So let’s see how to initialize the comparator module.
Analog comparator compares the analog values inputted on two pins namely AIN0 and
AIN1. AIN0 is the positive pin, whereas AIN1 is the negative input. The working of
this module is similar to any comparator IC. I.e. if the input on AIN0 is higher than the
analog voltage inputted on the AIN1 pin, then the ACO pin is set high. The ACO pin
can be set to trigger an interrupt. The output can be also set to trigger Timer/Counter 1
Input Capture (this will be discussed later). The user can select interrupt trigger on
comparator output rise, fall or toggle.

Surprisingly, there is no Enable bit like most of the other modules, but it has a disable
bit. ACD if set to ‘1’ will disable analog comparator. The analog comparator is enabled
by default. As mentioned in the previous paragraph, ACO is the comparator output. ACI
is the interrupt flag which is set when the comparator output triggers an interrupt. ACIE
is the bit which if set to ‘1’ will activate the comparator interrupt. ACIC bit if set will
enable Input Capture function of Timer 1. ACIS1:0 are the bits which need to be
configured in order to determine the interrupt mode. The various possible settings are
shown below:

35 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Now let’s create a function in order to configure the analog comparator module to
interrupt on rising output edge i.e. the module triggers an interrupt as the input at AIN0
starts rising above AIN1. As discussed above, we need to configure only very few bits
in the register Analog Comparator Control and Status Register (ACSR). Since we are
trying to enable the interrupt feature of the module, we also have to make sure that the
global interrupt enable is enabled by setting the ‘I’ bit of SREG register. This can also
be enabled by calling the sei () function.

This function will initialize the analog comparator so as to transfer the control to an
Interrupt Service Routine upon an interrupt trigger. But we didn’t right any ISR till now.
The vector address for analog comparator interrupt routine is ANA_COMP_vect. The
ISR can be written as follows. Add the desired operation inside the ISR so that they will
be executed whenever an analog comparator interrupt even occurs.

With this we conclude our discussion on analog comparator module.

In the next section we will start some serious discussion. The module that we are going
to discuss in the coming section is the most flexible module in the ATmega 16. This
makes it one of the most confusing modules to configure. Regardless of all these, this
module finds its application in many systems.

36 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Timers and Counters

In this section, we will discuss about how to configure the timer/counter modules of
ATmega 16. Why do we need them? Well. Timers/counters are used to generate PWM
signals, for generating accurately timed pulses and for counting external events. There
are three timer modules in ATmega 16, two 8-bit timer/counter modules and one 16 bit
timer/counter module.

But what is the basic difference between a timer and a counter? Some of you might
already know this. Timer is a module which increments its count whenever the Timer
clock ticks. A counter is that which increments its count each time an external event
occurs. So what is the difference between this 16 bit and 8 bit modules? Well a 16-bit
Timer/Counter can count up to a maximum of (216 -1) = 65535 where as an 8-bit
Timer/Counter can only count up to (28 -1) = 255. So why do I always call it a
Timer/Counter? Because the module can be used either as a timer or a counter. The only
difference between a timer and a counter is that the clock for the counter is generated
based on the occurrence of some external event. In order to make this discussion as
simple as possible, I would like to take this forward in a sequential manner. So by this
time you must have understood that the timer is counting based on some clock. So let’s
discuss about that first.

The timer module, like the ADC module has its own clock. The timer clock frequency
depends on the prescaler value. Setting prescaler sets the timer frequency as given
below:

Timer clock =
��� �����

���������

CPU clock may be internally generated from 1 MHz internal RC oscillator or from the
external crystal oscillator connected.

The timer counts, I mentioned it before. The counting always starts from ‘0’. The
maximum value that the counter can reach is termed as MAX. So in the case of an 8-bit
timer, MAX is 255. There is another value which is set by the programmer called TOP.
The value of TOP can be anything in the range [0, MAX]. When the TOP value is
attained by the timer counter, then a timer output compare match is said to have
happened. Based on this some things happen, which we will discuss shortly.

37 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

You need to have a basic idea about the registers before I can explain anything. So the
important registers are

 TCNTx (x = 0,1,2 depending on the timer which module you’re configuring)

This is the Timer/Counter register. The counter value is stored in this
register and gets incremented on each timer clock tick.

 OCRx (Output Compare Register, x = 0,1,2)

This register is called OCR0 for Timer/Counter 0, and OCR2 in the case
of Timer/ Counter 2. But there are two Output Compare Registers in the
case of Timer 1 since it is a 16 bit timer, namely OCR1A and OCR1B.
The TOP value I mentioned before is stored in the OCRx register by the
programmer. This value being compared with the TCNTx value after each
TCNTx incrementation.

 TCCRx (Timer/ Counter Control Registers)

Similar to the OCR registers, there are TCCR0, TCCR1A, TCCR1B and
TCCR2. The Compare output mode and Wave generation mode are
selected using this register. Also the prescaler setting is selected using
this register. In the case of the 8-bit timer/counter modules all the above
mentioned configurations are in a single register, while in the case of
timer/counter 1 the configuration is determined by TCCR1A and
TCCR1B.

 TIMSK

This register is called the Timer/Counter Interrupt Mask Register. This
register contains the interrupt settings of all the three timers. There are
two conditions of the timer which can be used to trigger an interrupt.

 Output compare match

An output compare match is said to have happened when the Output
Compare Register (OCRx) value matches the Timer/Counter (TCNTx)
value.

 Timer/Counter overflow

The Timer/Counter count value is said to have overflown if the TCNT
value reaches MAX, which is the maximum attainable value of the
counter. In this case the overflow flag is set and the counter value is
reset to zero. The counter starts counting again from ‘0’. The timer
overflow flag may trigger an interrupt if it is configured to act so.

38 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

 TIFR

This is the Timer/Counter Interrupt Flag register and stores the various
interrupt flags which are generated. They may be output compare match
flags or timer overflow flags. The interrupt flags of all the three
Timer/Counter modules are stored in this register.

We discussed about all the required registers. Now we are in a position to understand
the various modes of operation. Due to the high flexibility in the timer configurations,
there are a couple of timer modes which we can use. Depending on the timer mode, the
output of the timer may also vary. The final behavior of the Timer/Counter depends on
the Waveform Generation mode and Compare Output mode that we set in the TCCRx
register. The various modes of operation are:

1) Normal mode

2) Clear Timer on Compare Match mode (CTC)

3) Fast PWM mode

4) Phase Correct PWM mode

5) Phase and Frequency Correct PWM mode (in Timer/Counter 1 only).

I will give you a simplified explanation about all these different modes of operation. So
let’s start up with the normal mode.

Normal Mode

This is the simplest of all the timer modes. In this mode the TCNT simply keeps
on incrementing its value at each timer clock tick until it reaches the TOP value.
Once the TOP value is reached, the Timer Overflow Flag (TOVx) is set and can
be used to trigger an interrupt if you wish so.

This mode can be used to trigger periodic events.

Clear Timer on Compare Match (CTC) mode

 In this mode, the TCNTx value gets reset to zero when the TCNTx value
becomes equal to the OCRx value. This event is called an Output Compare
Match. When an output compare match occurs the OCx (output compare
register) value gets changed depending on what setting you’ve set in the
Compare Output mode bits(COMx1:0) of the TCCR register. Assume that the
Compare Output mode is configured to toggle OCx value when a compare match
occurs (i.e. COMx1:0 = 1). In this case a square wave is generated in the OCx
pin (which is an output of ATmega 16). This means that setting the
Timer/Counter to CTC mode outputs a square wave from the OCx pin of
ATmega. In the case of Timer/Counter 0, the square wave is produces on OC0
pin, and so is it for Timer/Counter 2 also. But since Timer/Counter 1 is a 16-bit

39 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

timer, there are two OCR registers namely, OCR1A and OCR1B which
independently can be configured to produce two square waves on the pins OC1A
and OC1B of ATmega 16. The following figure shows the Timer/Counter
behavior assuming that Compare Match mode (COMx1:0 = 1) is set to Toggle.

It is clear from the timing diagram that the OCx value gets toggles whenever the
TCNTx value equals the OCRx value. At that instant itself the TCNTx value is
reset to zero. “Oh god, are you telling me that I have to sit and find the frequency
of the generated square wave? I am lazy enough to leave this job undone.” Well,
no need to worry. You can find the timer output frequency using the following
equation:

Where N is the prescaler value. It can be 1, 8, 64, 256 or 1024.

Remarks: If the OCRx value is kept constant, then we can generate a 50% duty
cycle square wave of desired frequency. Or in other words, this can be used as a
square generator.

Fast PWM mode

This mode can be thought to be a combined form of Normal mode and CTC
mode with slight modifications. Note some important things before we proceed.
1) TOP is no longer equal to OCRx. TOP is equal to MAX for Timer 0 and 2.
Whereas we can set the TOP value in the case of Timer 1. The value that you
want to set as TOP must be written to register ICR1.

40 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

2) The TCNTx keeps on counting up to TOP, i.e. it doesn’t get reset when OCRx
equals TCNTx value.

3) The OCx value is changed not only during a compare match, but also when
the value reaches TOP. We can decide whether the OCx value gets set/cleared
when the TCNTx value reaches TOP value.

In this we can configure the Compare Output mode (COMx1:0) to
toggle/set/clear OCx pin or to trigger an interrupt as you wish. In Fast PWM
mode, the TCNTx do not get reset when it equals OCRx value, but it keeps on
incrementing although the OCx value gets altered according to the configuration
you set in the TCCRx register. The following figure shows the functioning of the
Timer/Counter 0 and 2 module in Fast PWM mode:

In the above picture, Compare Output mode (COMx1:0) is set in such a way that
the OCx gets set whenever an overflow occurs, and to clear the OCx pin
whenever an output compare match occurs (i.e. COMx1:0 = 2). The same timing
diagram in the case of Timer 1 is shown below. Please note that the OCn and its
compliment shown in the figure below are wrong. You can see that in the case
of Timer/Counter 1, the value till which TCNTx counts is determined by the
TOP value.

41 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Oh God, this guy is messing up everything that I understood till now (if any).
Don’t worry. Let’s scrutinize what I just explained to you. Note that the OCx
gets set whenever the TCNTx overflows. Remember that the overflow occurs
periodically, only after a fixed interval of time as the MAX for a Timer/Counter
is constant. This means that the OCx value is periodically ‘set’ in the above
figure. Now depending on the TOP value, the location in the wave at which the
OCx gets reset can be adjusted. In other words, we can adjust the duty cycle of
the generated square wave by adjusting the TOP value. The frequency of the
square wave is determined by the prescaler only. The following equations:

For Timer/Counter 0 and 2:

For Timer/Counter 1:

It is obvious why the denominator changed. In the case of Timer/Counter 0 and
2, the OCRx value is in range [0, MAX], whereas for Timer/Counter 1 it is in
the range of [0, TOP] or [0, ICR1], since TOP is set using the ICR1 register for
Timer 1.

42 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Phase correct PWM mode

I know what you would be feeling now. I felt the same way when I read about it
for the first time. But I hope this explanation is much simpler than the way it is
presented in the Atmel datasheet. Till now we discussed about operation modes
in which the TCNTx increments. Unlike the other modes, in phase correct PWM,
the TCNTx counts from BOTTOM to TOP and then decrements from TOP to
BOTTOM. The TOP value is set in a similar fashion to that in Fast PWM mode.
Similar to the Fast PWM mode, both TOP and compare match due to OCRx
alters the output OCx value. But here, unlike the case of Fast PWM, the output
compare happens both during increment and decrement.

But why is it called phase correct PWM? If you look carefully, you will find that
the square wave being generated has the TOP value at its center. This is the
reason why it is called a phase correct PWM. Therefore, in Phase Correct PWM,
the PWM channels are going to turn on or off at exactly the same time for all
duty cycles. When we create multiple PWM outputs through multiple channels,
this means that all the outputs will be in phase which is not possible in the case
of Fast PWM. The following is the timing diagrams for Phase correct PWM in
the case of Timer/Counter 0 and 2:

From the timing diagram, it is evident that the TOP value is constant and equal
to MAX in the case of Timer/Counter 0 and 2. The following is the timing
diagram in the case of Timer/Counter 1. It should be noted that the TOP value in

43 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

the case of Timer/Counter 1 can be changed. In other words, the frequency of
the PWM can be changed in Timer/Counter 1 whereas it is a constant (not exactly
as it can be varied using the prescaler) in the case of Timer/Counter 0 and 2.

The frequency of PWM can be found out using the following formulae:

For Timer/Counter 0 and 2:

For Timer/Counter 1:

Where N is the prescaler divider, N = 1, 8, 64, 256 or 1024.

I leave Phase and Frequency correct PWM to you as an assignment. Or in other words
I am tired talking about the modes available.

Now let’s take a closer look at the registers. I would advise you to go back a couple of
sections and brush up whatever we discussed till now. We will proceed in the same
order in which we discussed the topic. So, First the prescaler settings. I will explain
the configuration for Timer/Counter 1. Configuring the same for Timer 0 and 2 are
much simpler but similar. The prescaler is set using the Clock Select bits (CS12:0) for
Timer/Counter 1. The same bits in Timer/Counter are be called (CS02:0). The Clock
select bits are in the Timer/Counter 1 Control Register B (TCCR1B) in the case of
Timer 1.

44 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

The register in which this configuration needs to be set is shown below:

WGM 13:2 along with the WGM11:0 in the register TCCR1A determines the mode of
operation. The Register in which the counter value is stored is shown below (shown to
make the description complete).

The output Compare Registers A and B in the case of Timer 1 are shown below:

As explained earlier, the OCR1A and OCR1B are capable of making two
independent square waves on the OC1A and OC1B respectively.

Now we’ll see the register TCCR1A which holds the Compare Output mode and
Waveform generation mode settings. Waveform generation mode is nothing but
the different modes that we discussed before.

COM1A1:0 determines the Output Compare modes for OC1A whereas
COM1B1:0 determines that for OC1B as shown below. Please note that
depending on the waveform generation mode that we select, the Compare Output
mode configuration changes.

45 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

46 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Now let’s see how to select the mode of operation for the Timer/Counter 1.

Now we’ll discuss how to set up timer interrupts. The timer interrupts are set
using the register TIMSK. The timer can be set to trigger an interrupt on either of
the following happenings:

1) Input Capture, i.e. when ICF1 flag is set ‘1’.

2) Output Compare Match on A and B

3) Timer/Counter overflow

The register TIMSK is shown below:

47 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

The vector name which needs to be used as parameter when an interrupt is
enabled is different for each of the three interrupt configurations. They are”

Let’s do some coding before concluding this discussion.

 CTC mode

We will make a 50% duty cycle square wave of 1Hz frequency using the
CTC mode of Timer/Counter 1. We will make this output available on the
0C1A pin of the microcontroller. So we’ll use 1024 prescaler to create the
timer clock. Note that the clock frequency is 1MHz. So, we can find the
OCR1A using the equation given in the discussion about CTC mode. For
generating a 1Hz square wave, OCR1A = 487.

Now we will configure the wave generation mode.

There is one more setting left, Compare Match mode. We will toggle the
OC1A pin in this example.

Don’t forget to set the OC1A pin to output. OC1A pin is multiplexed with
PD5. So let’s make a function which can be used hereafter to create a square
wave.

48 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

In order to use interrupt, we have to enable the interrupt mask in TIMSK.
Also don’t forget to enable the global interrupt using sei ().

In this case, the timer function will look like this:

The ISR routine will look like this.

 PWM mode

In a similar fashion as explained for CTC mode,

With this we will conclude our discussion on timers. Configuring the others
are similar to this and can be done easily if you understood the tutorial.

49 | A B e g i n n e r ’ s G u i d e T o A V R

Robotics Interest Group

Mechatronics and Robotics Lab

National Institute of Technology Calicut

Bibliography
1. www.atmel.in

View publication statsView publication stats

https://www.researchgate.net/publication/263084656

